
TWN4

API Reference

DocRev8, September 12, 2014

Elatec GmbH

Contents

Contents

1 System Functions . 10
1.1 SysCall . 10
1.2 Reset . 10
1.3 StartBootloader . 10
1.4 GetSysTicks . 11
1.5 GetVersionString . 11
1.6 GetUSBType . 12
1.7 GetDeviceType . 12
1.8 Sleep . 12
1.9 GetDeviceUID . 13
1.10 SetParameters . 13
1.11 GetLastError . 14

2 I/O Functions . 15
2.1 Configuration . 15

2.1.1 Set COM-Port Parameters . 15
2.1.2 Get USB Device State . 15
2.1.3 Get Host Channel . 16

2.2 Data I/O . 17
2.2.1 Query I/O Buffer Size . 17
2.2.2 Get I/O Buffer Byte Count . 17
2.2.3 Test Empty . 18
2.2.4 Test Full . 18
2.2.5 Send Byte . 19
2.2.6 Read Byte . 19

3 Memory Functions . 20
3.1 Byte Operations . 20

3.1.1 Compare Bytes . 20
3.1.2 Copy Bytes . 20
3.1.3 Fill Bytes . 21
3.1.4 Swap Bytes . 21

3.2 Bit Operations . 22
3.2.1 Read Bit . 22
3.2.2 Write Bit . 22
3.2.3 Copy Bit . 23
3.2.4 Compare Bits . 24
3.2.5 Copy Bits . 24

Page 2 of 196

Contents

3.2.6 Fill Bits . 25
3.2.7 Swap Bits . 25
3.2.8 Count Bits . 26

4 Peripheral Functions . 27
4.1 General Purpose Inputs/Outputs (GPIOs) . 27

4.1.1 Configuration . 27
4.1.1.1 Outputs . 27
4.1.1.2 Inputs . 28

4.1.2 Basic Port Functions . 28
4.1.2.1 Set GPIOs to Logical Level 28
4.1.2.2 Toggle GPIOs . 29
4.1.2.3 Waveform Generation . 29
4.1.2.4 Read GPIOs . 30

4.1.3 Higher Level Port Functions . 30
4.1.3.1 Send Data in Wiegand Format 30
4.1.3.2 Send Data in Omron Format 32

4.2 Beeper . 33
4.3 LEDs . 34

4.3.1 General Purpose LED Functions . 34
4.3.1.1 Initialization . 34
4.3.1.2 Set LEDs On/Off . 35
4.3.1.3 Toggle LEDs . 35
4.3.1.4 Blink LEDs . 35
4.3.1.5 Get LED State . 36

4.3.2 Diagnostic LED . 36
4.3.2.1 Set Diagnostic LED On/Off 36
4.3.2.2 Toggle Diagnostic LED . 37
4.3.2.3 Get LED State . 37

5 Conversion Functions . 38
5.1 Hexadecimal ASCII to Binary . 38

5.1.1 Scan Hexadecimal Character . 38
5.1.2 Scan Hexadecimal String . 38

5.2 Binary to Hexadecimal ASCII . 39
6 I2C Functions . 41

6.1 Initialization/Deinitialization . 41
6.1.1 I2CInit . 41
6.1.2 I2CDeInit . 41
6.1.3 Examples . 41

6.2 Communication (Master) . 42
6.2.1 I2CMasterStart . 42
6.2.2 I2CMasterStop . 42
6.2.3 I2CMasterTransmitByte . 42
6.2.4 I2CMasterReceiveByte . 42
6.2.5 I2CMasterBeginWrite . 43

Page 3 of 196

Contents

6.2.6 I2CMasterBeginRead . 43
6.2.7 I2CMasterSetAck . 43
6.2.8 Examples . 43

6.3 Communication (Slave) . 44
6.3.1 Slave to Master . 45
6.3.2 Master to Slave . 45
6.3.3 Examples . 45

7 RF Functions . 47
7.1 SearchTag . 47
7.2 SetRFOff . 47
7.3 SetTagTypes . 48

7.3.1 Supported Types of LF Tags (125 kHz - 134.2 kHz) 49
7.3.2 Supported Types of HF Tags (13.56 MHz) 50

7.4 GetTagTypes . 50
7.5 GetSupportedTagTypes . 51

8 HITAG 1- and HITAG S-Specific Transponder Operations 52
8.1 Read/Write Data . 52

8.1.1 Hitag1S_ReadPage . 52
8.1.2 Hitag1S_WritePage . 53
8.1.3 Hitag1S_ReadBlock . 53
8.1.4 Hitag1S_WriteBlock . 53

8.2 Hitag1S_Halt . 54
9 HITAG 2-Specific Transponder Operations . 55

9.1 Read/Write Data . 55
9.1.1 Hitag2_ReadPage . 55
9.1.2 Hitag2_WritePage . 55
9.1.3 Hitag2_SetPassword . 56

9.2 Hitag2_Halt . 56
10 EM4x50-Specific Transponder Operations . 57

10.1 Functions . 57
10.1.1 EM4150_Login . 57
10.1.2 EM4150_ReadWord . 57
10.1.3 EM4150_WriteWord . 58
10.1.4 EM4150_WritePassword . 58

11 AT55xx-Specific Transponder Operations . 59
11.1 Control Functions . 59

11.1.1 AT55_Begin . 59
11.2 Read Data . 59

11.2.1 AT55_ReadBlock . 60
11.2.2 AT55_ReadBlockProtected . 60

11.3 Write Data . 61
11.3.1 AT55_WriteBlock . 61
11.3.2 AT55_WriteBlockProtected . 61
11.3.3 AT55_WriteBlockAndLock . 62

Page 4 of 196

Contents

11.3.4 AT55_WriteBlockProtectedAndLock 62
12 TILF (TIRIS) Functions . 63

12.1 Search Function . 63
12.1.1 TILF_SearchTag . 63

12.2 Single-Page Read/Write Function . 64
12.2.1 TILF_ChargeOnlyRead . 64
12.2.2 TILF_ChargeOnlyReadLo . 64
12.2.3 TILF_SPProgramPage . 64
12.2.4 TILF_SPProgramPageLo . 65

12.3 Multi-Page Read/Write Function . 65
12.3.1 TILF_MPGeneralReadPage . 65
12.3.2 TILF_MPSelectiveReadPage . 65
12.3.3 TILF_MPProgramPage . 66
12.3.4 TILF_MPSelectiveProgramPage . 66
12.3.5 TILF_MPLockPage . 67
12.3.6 TILF_MPSelectiveLockPage . 67
12.3.7 TILF_MPGeneralReadPageLo . 68
12.3.8 TILF_MPSelectiveReadPageLo . 68
12.3.9 TILF_MPProgramPageLo . 68
12.3.10 TILF_MPSelectiveProgramPageLo 69
12.3.11 TILF_MPLockPageLo . 69
12.3.12 TILF_MPSelectiveLockPageLo . 70

12.4 Multi-Usage Read/Write Function . 70
12.4.1 TILF_MUGeneralReadPage . 70
12.4.2 TILF_MUSelectiveReadPage . 70
12.4.3 TILF_MUSpecialReadPage . 71
12.4.4 TILF_MUProgramPage . 71
12.4.5 TILF_MUSelectiveProgramPage . 72
12.4.6 TILF_MUSpecialProgramPage . 72
12.4.7 TILF_MULockPage . 72
12.4.8 TILF_MUSelectiveLockPage . 73
12.4.9 TILF_MUSpecialLockPage . 73

13 ISO14443 Transponder Operations . 74
13.1 ISO14443A . 74

13.1.1 Get ATQA . 74
13.1.2 Get SAK . 74
13.1.3 Get ATS . 75

13.2 ISO14443B . 75
13.2.1 Get ATQB . 75
13.2.2 Get Answer to ATTRIB . 76

13.3 Check Presence . 76
13.4 ISO14443-4 Transparent Data Exchange . 77

14 MIFARE Classic Specific Transponder Operations 78
14.1 Login . 78

Page 5 of 196

Contents

14.2 Read/Write Data . 79
14.2.1 Read Data Block . 79
14.2.2 Write Data Block . 80

14.3 Handling of Value Blocks . 80
14.3.1 Read Value Block . 80
14.3.2 Write Value Block . 81
14.3.3 Increment Value Block . 81
14.3.4 Decrement Value Block . 82

15 MIFARE Ultralight/Ultralight C Specific Transponder Operations 84
15.1 Login (Ultralight C only) . 84
15.2 Read/Write Data . 85

15.2.1 Read Page . 85
15.2.2 Write Page . 85

16 DESFire Specific Transponder Operations . 87
16.1 Security Related Operations . 88

16.1.1 Authenticate . 88
16.1.2 Get Key Version . 91
16.1.3 Get Key Settings . 92
16.1.4 Change Key Settings . 94
16.1.5 Change Key . 94

16.2 Transponder Related Operations . 96
16.2.1 Create Application . 96
16.2.2 Delete Application . 97
16.2.3 Get Application IDs . 98
16.2.4 Select Application . 99
16.2.5 Format Transponder . 100
16.2.6 Get Transponder Information . 100
16.2.7 Get Available Memory Space . 102
16.2.8 Get Card UID . 102
16.2.9 Set Transponder Configuration . 103

16.2.9.1 Disable Format Tag . 103
16.2.9.2 Enable Random ID . 104
16.2.9.3 Set Default Key . 104
16.2.9.4 Set User-defined Answer To Select (ATS) 105

16.3 Application Related Operations . 106
16.3.1 Create File . 108
16.3.2 Delete File . 110
16.3.3 Get File IDs . 110
16.3.4 Get File Settings . 111
16.3.5 Change File Settings . 113

16.4 File Related Operations . 114
16.4.1 Data Files . 114

16.4.1.1 Read Data . 114
16.4.1.2 Write Data . 116

Page 6 of 196

Contents

16.4.2 Value Files . 119
16.4.2.1 Get Value . 119
16.4.2.2 Debit . 120
16.4.2.3 Credit . 121
16.4.2.4 Limited Credit . 122

16.4.3 Commit Transaction . 123
16.4.4 Abort Transaction . 124

17 ISO15693 Specific Transponder Operations . 125
17.1 Generic ISO15693 Command . 125
17.2 Gather Tag Specific Information . 126

17.2.1 Get System Information . 126
17.2.2 Get Tag Type . 127

17.2.2.1 Get Tag Type From UID . 127
17.2.2.2 Get Tag Type From System Information 129

17.3 Read/Write Data . 131
17.3.1 Read Single Block . 131
17.3.2 Write Single Block . 131

18 LEGIC-Specific Functions . 133
18.1 Direct Access of LEGIC Chip . 133

18.1.1 SM4X00_GenericRaw . 133
18.1.2 SM4X00_Generic . 134
18.1.3 SM4X00_StartBootloader . 135
18.1.4 SM4X00_EraseFlash . 135
18.1.5 SM4X00_ProgramBlock . 136

19 iCLASS Specific Transponder Operations . 137
19.1 Read PAC Bits . 137
19.2 Example . 138

20 Simple NDEF Exchange Protocol (SNEP) . 139
20.1 Initialize SNEP Service . 139
20.2 Get Connection State . 140
20.3 Query Message FIFO . 140
20.4 Transmit NDEF Message . 141

20.4.1 Begin Message . 141
20.4.2 Send Message Fragment . 141
20.4.3 Example . 143

20.5 Receive NDEF Message . 145
20.5.1 Test Message . 145
20.5.2 Receive Message Fragment . 145
20.5.3 Example . 147

21 Contact Card Operations . 149
21.1 Query Card Slot Status . 149
21.2 Card Activation . 151
21.3 Card Deactivation . 152
21.4 Set Communication Settings . 153

Page 7 of 196

Contents

21.5 Transparent Data Transmission . 155
21.6 Exchange Of APDUs . 157
21.7 Examples . 159

21.7.1 PPS Example . 159
21.7.2 Communication Example . 160

22 Cryptographic Operations . 162
22.1 Initialization . 165
22.2 Encrypt . 166
22.3 Decrypt . 167
22.4 Reset Init Vector . 167

23 Storage Functions . 168
23.1 Management Functions . 169

23.1.1 FSMount . 169
23.1.2 FSFormat . 169

23.2 File Functions . 170
23.2.1 FSOpen . 170
23.2.2 FSClose . 171
23.2.3 FSCloseAll . 171
23.2.4 FSSeek . 172
23.2.5 FSTell . 172
23.2.6 FSReadBytes . 173
23.2.7 FSWriteBytes . 173

23.3 Directory Functions . 174
23.3.1 FSFindFirst . 174
23.3.2 FSFindNext . 175
23.3.3 FSDelete . 175
23.3.4 FSRename . 175
23.3.5 Examples . 176

24 System Parameters . 179
24.1 TLV Format . 179
24.2 Manifest . 179
24.3 Available Parameters . 181

25 System Errors . 183
26 Runtime Library . 185

26.1 Timer Functions . 185
26.1.1 StartTimer . 185
26.1.2 StopTimer . 185
26.1.3 TestTimer . 186

26.2 Host Communication . 186
26.2.1 SetHostChannel . 186
26.2.2 HostTestByte . 187
26.2.3 HostReadByte . 187
26.2.4 HostTestChar . 187
26.2.5 HostReadChar . 187

Page 8 of 196

Contents

26.2.6 HostWriteByte . 188
26.2.7 HostWriteChar . 188
26.2.8 HostWriteString . 188
26.2.9 HostWriteRadix . 188
26.2.10 HostWriteBin . 189
26.2.11 HostWriteDec . 189
26.2.12 HostWriteHex . 190
26.2.13 HostWriteVersion . 190

26.3 Beep Functions . 190
26.3.1 SetVolume . 190
26.3.2 GetVolume . 191
26.3.3 BeepLow . 191
26.3.4 BeepHigh . 191

26.4 Compatibility to TWN3 . 191
26.4.1 ConvertTagTypeToTWN3 . 191

26.5 Simple Protocol . 192
26.5.1 SimpleProtoInit . 193
26.5.2 SimpleProtoTestCommand . 193
26.5.3 SimpleProtoExecuteCommand . 193
26.5.4 SimpleProtoSendResponse . 194

27 Compatibility of TWN4 Mini Reader MIFARE NFC 195

Page 9 of 196

1 System Functions

1 System Functions

1.1 SysCall

This function is useful for writing interfaces, which do a remote call of a system func-
tion,

bool SysCall(TEnvSysCall *Env);

Parameters:

TEnvSysCall *Env Pointer to a structure which specifies parameters of the func-
tions to be called.

Return: If the function has been called the return value is true, other-
wise it is false. In this case the specified function does not
exist.

1.2 Reset

This functions is performing a reset of the firmware, which also includes a restart of the
currently running App.

void Reset(void);

Parameters: None.

Return: None.

1.3 StartBootloader

This function is performing a manual call of the boot loader. As a consequence the execution
of the App is stopped.

void StartBootloader(void);

Parameters: None.

Return: None.

Page 10 of 196

1 System Functions

1.4 GetSysTicks

Retrieve number of system ticks, specified in multiple of 1 milliseconds, since startup of the
firmware.

unsigned long GetSysTicks(void);

Parameters: None.

Return: Number of system ticks since startup of the firmware. The
returned value will restart at 0 after 232 system ticks (around
1193 hours).

1.5 GetVersionString

Retrieve version information. The function generates a ASCII string, terminated by 0.

int GetVersionString(char *VersionString,int MaxLen);

Parameters:

char *VersionString Pointer to an array of characters, which will receive the version
information.

int MaxLen Maximum number of characters, the specified byte array can
receive excluding the 0-termination.

Return: Length of the returned string excluding the 0-termination.

Example:

// This sample demonstrates, how to send the version string
// to the host
void WriteChar(char Char)
{

HostWriteByte(Char);
}
void WriteString(const char *String)
{

while (*String)
WriteChar(*String++);

}
void WriteVersion(void)
{

char Version[30+1];
GetVersionString(Version,sizeof(Version)-1);
WriteString(Version);

}

Page 11 of 196

1 System Functions

1.6 GetUSBType

Retrieve type of USB communication. This could by keyboard emulation or CDC emulation
or some other value for future or custom implementations.

int GetUSBType(void);

Parameters: None.

Return: USBTYPE_NONE: No USB stack, USBTYPE_CDC: CDC device
(virtual COM port), USBTYPE_CDC: HID keyboard

1.7 GetDeviceType

Retrieve type of underlying TWN4 hardware.

int GetDeviceType(void);

Parameters: None.

Return: DEVTYPE_LEGICNFC: TWN4 LEGIC NFC,
DEVTYPE_MIFARENFC: TWN4 MIFARE NFC

1.8 Sleep

The device enters the sleep state for a specified time. During sleep state, the device reduces
the current consumption to as low as 8mA (TWN4 MIFARE NFC) and 20mA (TWN4 LEGIC
NFC).

int Sleep(unsigned long Ticks,unsigned long Flags)

Parameters:

unsigned long Ticks Time, specified in milliseconds, the device should enter the
sleep state.

unsigned long Flags Events, which cause the function immediately to return. The
parameter is a bitwise OR of all events to be handled.

Return: This function always return the value 0.

The sleep state can optionally be interrupted by events. These events are specified as
parameters in the call of the function Sleep. There are several definitions for the their
corresponding events.

Page 12 of 196

1 System Functions

Definition Value Description

WAKEUP_BY_USB_MSK 0x01 The USB input channel received at least on byte.

WAKEUP_BY_COM1_MSK 0x02 The input channel of COM1 received at least on byte.

WAKEUP_BY_COM2_MSK 0x04 The input channel of COM2 received at least on byte.

1.9 GetDeviceUID

This function returns a UID, which is unique to the specific TWN4 device.

void GetDeviceUID(byte *UID)

Parameters:

byte *UID Pointer ro an array of bytes, which receives 12 bytes. These
12 bytes represent the UID of the device.

Return: None.

1.10 SetParameters

This function allows to set parameters, which influence the behaviour of the TWN4 firmware.
See also chapter System Parameters for a description of the TLV list and all available para-
maters.

bool SetParameters(const byte *TLV,int ByteCount)

Parameters:

const byte *TLV Pointer to an array of bytes, which contains the TLV list.

int ByteCount Length counted in bytes, the TLV list contains.

Return: The function returns true, if the parameters was set to the
new value. Otherwise the function returns false.

Example:

// This sample demonstrates a call of function SetParameters.
const byte TLVBytes[] =
{

ICLASS_READMODE, 1, ICLASS_READMODE_PAC, // Read PAC from iClass.
INDITAG_READMODE, 1, INDITAG_READMODE_2, // Set Inditag readmode 2
TLV_END // End of TLV

};

int main(void)

Page 13 of 196

1 System Functions

{
// ...
SetParameters(TLVBytes,sizeof(TLVBytes));
// ...

}

1.11 GetLastError

This function allows to read the last error code, which was generated by any system function.
For a list of available error code see chapter System Errors.

unsigned int GetLastError(void)

Parameters: None.

Return: The error code.

Page 14 of 196

2 I/O Functions

2 I/O Functions

2.1 Configuration

2.1.1 Set COM-Port Parameters

This function can be used to configure the asynchronous serial communication ports COM1
and COM2.

bool SetCOMParameters
(
int Channel,
TCOMParameters* COMParameters
);

Parameters:

int Channel Specify the communication port which shall be config-
ured. Use one of the predefined constants CHANNEL_COM1 or
CHANNEL_COM2.

TCOMParameters*
COMParameters

Reference to the structure that holds the communication pa-
rameters. See the description of TCOMParameters for details.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

2.1.2 Get USB Device State

This function returns the functional state of the USB-controller in case the reader is running
as USB-device.

int GetUSBDeviceState(void);

Page 15 of 196

2 I/O Functions

Members Length
(Bits)

Description

unsigned long BaudRate 32 This member holds the baud rate.

byte WordLength 8 This member holds the word-length
in bits. Use the predefined constant
COM_WORDLENGTH_8.

byte Parity 8 This member holds the type of parity to
be used. Use one of the predefined con-
stants COM_PARITY_NONE, COM_PARITY_ODD or
COM_PARITY_EVEN.

byte StopBits 8 This member holds the number of stop
bits. Use one of the predefined con-
stants COM_STOPBITS_0_5, COM_STOPBITS_1,
COM_STOPBITS_1_5 or COM_STOPBITS_2.

byte FlowControl 8 This member holds the type of flow control
to be used. Use the predefined constant
COM_FLOWCONTROL_NONE.

Table 2.1: Definition of TCOMParameters

Parameters: None.

Return: Depending on the functional state, the re-
turn value is one of the predefined constants
USB_DEVICE_STATE_DEFAULT, USB_DEVICE_STATE_ADDRESSED,
USB_DEVICE_STATE_CONFIGURED or
USB_DEVICE_STATE_SUSPENDED.

2.1.3 Get Host Channel

This function returns the channel, which is actually configured for host communication.

int GetHostChannel(void);

Parameters: None.

Return: The return value is one of the predefined constants
CHANNEL_NONE, CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2 or
CHANNEL_I2C.

Page 16 of 196

2 I/O Functions

2.2 Data I/O

2.2.1 Query I/O Buffer Size

Use this function to retrieve the input/output buffer size of a specific communication channel.

int GetBufferSize
(
int Channel,
int Dir
);

Parameters:

int Channel Specify the communication channel. Use one of the prede-
fined constants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2,
CHANNEL_I2C or CHANNEL_RNG.

int Dir Specify the direction. Use one of the predefined constants
DIR_OUT or DIR_IN.

Return: The buffer size in bytes.

2.2.2 Get I/O Buffer Byte Count

Use this function to retrieve the number of bytes that are actually stored in the respective I/O
buffer. In case of querying the output direction, the functions returns the number of bytes
that have not been sent yet, in case of the input direction the number of available bytes that
can be read is returned.

int GetByteCount
(
int Channel,
int Dir
);

Parameters:

int Channel Specify the communication channel. Use one of the prede-
fined constants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2,
CHANNEL_I2C or CHANNEL_RNG.

int Dir Specify the direction. Use one of the predefined constants
DIR_OUT or DIR_IN.

Return: The number of bytes that are stored in the buffer.

Page 17 of 196

2 I/O Functions

2.2.3 Test Empty

Check if there are any bytes in the specified I/O buffer.

bool TestEmpty
(
int Channel,
int Dir
);

Parameters:

int Channel Specify the communication channel. Use one of the prede-
fined constants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2,
CHANNEL_I2C or CHANNEL_RNG.

int Dir Specify the direction. Use one of the predefined constants
DIR_OUT or DIR_IN.

Return: If the buffer is empty, the return value is true, otherwise it is
false.

2.2.4 Test Full

Check if the specified I/O buffer can receive any further data.

bool TestFull
(
int Channel,
int Dir
);

Parameters:

int Channel Specify the communication channel. Use one of the prede-
fined constants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2,
CHANNEL_I2C or CHANNEL_RNG.

int Dir Specify the direction. Use one of the predefined constants
DIR_OUT or DIR_IN.

Return: If the buffer is full, the return value is true, otherwise it is
false.

Page 18 of 196

2 I/O Functions

2.2.5 Send Byte

Use this function to send one byte through a specific communication channel. If the respec-
tive output buffer is completely occupied, the function blocks until there is enough space.

void WriteByte
(
int Channel,
byte Byte
);

Parameters:

int Channel Specify the communication channel. Use one of the prede-
fined constants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2 or
CHANNEL_I2C.

byte Byte The byte to be sent.

Return: None.

2.2.6 Read Byte

Use this function to read a byte from the input buffer of a specific communication channel. If
there is no byte available, the function blocks until there is one.

byte ReadByte
(
int Channel
);

Parameters:

int Channel Specify the communication channel. Use one of the prede-
fined constants CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2,
CHANNEL_I2C or CHANNEL_RNG.

Return: The byte which was read from the input buffer.

Page 19 of 196

3 Memory Functions

3 Memory Functions

3.1 Byte Operations

3.1.1 Compare Bytes

Compare two byte arrays.

bool CompBytes
(
const byte* Data1,
const byte* Data2,
int ByteCount
);

Parameters:

const byte* Data1 Reference to an array of bytes.

const byte* Data1 Reference to an array of bytes.

int ByteCount Number of bytes (beginning from index 0) to be compared.

Return: If the two arrays are identical, the return value is true, other-
wise it is false.

3.1.2 Copy Bytes

Copy bytes from a source to a destination. Source and destination may be identical and
the source section may overlap the destination. Depending on that, the correct method for
copying will be chosen.

void CopyBytes
(
byte* DestBytes,
const byte* SourceBytes,
int ByteCount
);

Page 20 of 196

3 Memory Functions

Parameters:

byte* DestBytes Reference to an array of bytes which is the destination of the
copy operation.

const byte* SourceBytes Reference to an array of bytes which is the source of the copy
operation.

int ByteCount Number of bytes to be copied.

Return: None.

3.1.3 Fill Bytes

Fill bytes within a given array with a value.

void FillBytes
(
byte* Dest,
byte Value,
int ByteCount
);

Parameters:

byte* Dest Reference to an array of bytes which is the destination for the
operation.

byte Value The byte value with which the array will be filled.

int ByteCount Number of bytes to be filled.

Return: None.

3.1.4 Swap Bytes

Swap the order of bytes within an array.

void SwapBytes
(
byte* Data,
int ByteCount
);

Page 21 of 196

3 Memory Functions

Parameters:

byte* Data Reference to an array of bytes which is the destination for the
operation.

int ByteCount Number of bytes to be swapped.

Return: None.

3.2 Bit Operations

Bit operations are working on bit fields. A bit field is represented by an array of bytes. The
diagram below shows how bit operations are interpreting a given bit offset within an array of
bytes:

3.2.1 Read Bit

Read the value of one single bit within a bit field.

bool ReadBit
(
const byte* Byte,
int BitNr
);

Parameters:

const byte* Byte Reference to an array of bytes which represents the bit field
where one bit shall be read.

int BitNr Position of the bit within the bit field.

Return: The bit value: true means 1, false means 0.

3.2.2 Write Bit

Set one single bit within a bit field to a given value.

Page 22 of 196

3 Memory Functions

void WriteBit
(
byte* Byte,
int BitNr,
bool Value
);

Parameters:

byte* Byte Reference to an array of bytes which represents the bit field
where one bit shall be written.

int BitNr Position within the bit field, where the bit is to be written.

bool Value The bit value: true means 1, false means 0.

Return: None.

3.2.3 Copy Bit

Copy one single bit from a source to a destination. Source and destination may be identical.

void CopyBit
(
byte* Dest,
int DestBitNr,
const byte* Source,
int SourceBitNr
);

Parameters:

byte* Dest Reference to an array of bytes which is the destination for the
operation.

int DestBitNr Position within the destination bit field, where the bit is copied
to.

const byte* Source Reference to an array of bytes which is the source for the
operation.

int SourceBitNr Position within the source bit field, where the bit is copied
from.

Return: None.

Page 23 of 196

3 Memory Functions

3.2.4 Compare Bits

Compare two bit sets.

bool CompBits
(
const byte* Data1,
int Data1StartBit,
const byte* Data2,
int Data2StartBit,
int BitCount
);

Parameters:

const byte* Data1 Reference to an array of bytes which represents a bit field.

int Data1StartBit Start-index (beginning from 0) of the first bit field.

const byte* Data2 Reference to an array of bytes which represents a bit field.

int Data1StartBit Start-index (beginning from 0) of the second bit field.

int BitCount Number of bits to be compared.

Return: If the two bit-sets are identical, the return value is true, other-
wise it is false.

3.2.5 Copy Bits

Copy bits from a source to a destination. Source and destination may be identical and the
source section may overlap the destination. Depending on that, the correct method for copy-
ing will be chosen.

void CopyBits
(
byte* DestBits,
int StartDestBit,
const byte* SourceBits,
int StartSourceBit,
int BitCount
);

Page 24 of 196

3 Memory Functions

Parameters:

byte* DestBits Reference to an array of bytes which represents a bit field
which is the destination of the copy operation.

int StartDestBit First bit within the destination bit field where the bits are
copied to.

const byte* SourceBits Reference to an array of bytes which represents a bit field
which is the source of the copy operation.

int StartSourceBit First bit within the source bit field where the bits are copied
from.

int BitCount Number of bits to be copied.

Return: None.

3.2.6 Fill Bits

Fill bits within a given bit field with either 0 or 1.

void FillBits
(
byte* Dest,
int StartBit,
bool Value,
int BitCount
);

Parameters:

byte* Dest Reference to an array of bytes which represents a bit field
which is the destination for the operation.

int StartBit First bit within the bit field where the bits are filled.

bool Value The bit value: true means 1, false means 0.

int BitCount Number of bits to be filled.

Return: None.

3.2.7 Swap Bits

Swap the order of bits within a bit field.

void SwapBits
(
byte* Data,

Page 25 of 196

3 Memory Functions

int StartBit,
int BitCount
);

Parameters:

byte* Data Reference to an array of bytes which represents a bit field
which is the destination for the operation.

int StartBit First bit within the bit field where bits are swapped.

int BitCount Number of bits to be swapped.

Return: None.

3.2.8 Count Bits

Count the number of ones or zeros within a bit field.

int CountBits
(
const byte* Data,
int StartBit,
bool Value,
int BitCount
);

Parameters:

const byte* Data Reference to an array of bytes which represents a bit field.

int StartBit First bit within the bit field where counting shall start.

bool Value The bit value: true means count ones, false means count
zeros.

int BitCount Size of the bit field.

Return: Number of counted bits.

Page 26 of 196

4 Peripheral Functions

4 Peripheral Functions

4.1 General Purpose Inputs/Outputs (GPIOs)

4.1.1 Configuration

4.1.1.1 Outputs

Use this function to configure one or several GPIOs as output. Each output can be config-
ured to have an integrated pull-up or pull-down resistor. The output driver characteristic is
either Push-Pull or Open Drain.

void GPIOConfigureOutputs
(
int Bits,
int PullUpDown,
int OutputType
);

Parameters:

int Bits Specify the GPIOs that shall be configured for output. Several
GPIOs can be configured simultaneously by using the bitwise
or-operator (|). Use the predefined constants GPIO0 through
GPIO7 for specifying the GPIOs.

int PullUpDown Specify the behaviour of the internal weak pull-up/down resis-
tor. Use one of the predefined constants GPIO_PUPD_NOPULL,
GPIO_PUPD_PULLUP or GPIO_PUPD_PULLDOWN.

int OutputType Specify the output driver characteristic. Use one
the predefined constants GPIO_OTYPE_PUSHPULL or
GPIO_OTYPE_OPENDRAIN.

Return: None.

Page 27 of 196

4 Peripheral Functions

4.1.1.2 Inputs

Use this function to configure one or several GPIOs as input. Each output can be configured
to have an integrated pull-up or pull-down resistor, alternatively it can be left floating.

void GPIOConfigureInputs
(
int Bits,
int PullUpDown
);

Parameters:

int Bits Specify the GPIOs that shall be configured for input. Several
GPIOs can be configured simultaneously by using the bitwise
or-operator (|). Use the predefined constants GPIO0 through
GPIO7 for specifying the GPIOs.

int PullUpDown Specify the behaviour of the internal weak pull-up/down resis-
tor. Use one of the predefined constants GPIO_PUPD_NOPULL,
GPIO_PUPD_PULLUP or GPIO_PUPD_PULLDOWN.

Return: None.

4.1.2 Basic Port Functions

4.1.2.1 Set GPIOs to Logical Level

Use this function to set one or several GPIOs to logical high or low level. The respective
ports must have been configured to output in advance.

void GPIOSetBits(int Bits);
void GPIOClearBits(int Bits);

Parameters:

int Bits Specify the GPIOs that shall be set to a logical level. Several
GPIOs can be handled simultaneously by using the bitwise
or-operator (|). Use the predefined constants GPIO0 through
GPIO7 for specifying the GPIOs.

Return: None.

Page 28 of 196

4 Peripheral Functions

4.1.2.2 Toggle GPIOs

Use this function to toggle the logical level of one or several GPIOs. The respective ports
must have been configured to output in advance.

void GPIOToggleBits
(
int Bits
);

Parameters:

int Bits Specify the GPIOs that shall be toggled. Several GPIOs can
be handled simultaneously by using the bitwise or-operator (|).
Use the predefined constants GPIO0 through GPIO7 for speci-
fying the GPIOs.

Return: None.

4.1.2.3 Waveform Generation

Use this function to generate a pulse-width modulated square waveform with constant fre-
quency on one or several GPIOs. The respective ports must have been configured to output
in advance.

void GPIOBlinkBits
(
int Bits,
int TimeHi,
int TimeLo
);

Parameters:

int Bits Specify the GPIOs that shall generate the waveform. Several
GPIOs can be handled simultaneously by using the bitwise
or-operator (|). Use the predefined constants GPIO0 through
GPIO7 for specifying the GPIOs.

int TimeHi Specify the duration for logical high level in milliseconds.

int TimeLo Specify the duration for logical low level in milliseconds.

Return: None.

Page 29 of 196

4 Peripheral Functions

4.1.2.4 Read GPIOs

Use this function to read the logical level of one GPIO that has been configured as input.

int GPIOTestBit
(
int Bit
);

Parameters:

int Bits Specify the GPIO that shall be read. Use one of the prede-
fined constants GPIO0 through GPIO7 for specifying the GPIO.

Return: If the GPIO has logical high level, the return value is 1, other-
wise it is 0.

4.1.3 Higher Level Port Functions

4.1.3.1 Send Data in Wiegand Format

Use this function to send a bitstream via a software emulated Wiegand interface. A Wie-
gand interface uses two data lines, one line is used to transmit ones, the other one is used to
transmit zeros. Each GPIO can be individually configured to act as data line. Note that the
integrated API LED-functions are working with GPIO0 to GPIO2 by default, so the Wiegand
data lines should be selected carefully.

void SendWiegand(int GPIOData0,int GPIOData1,int PulseTime,
int IntervalTime,byte* Bits,int BitCount);

Page 30 of 196

4 Peripheral Functions

Parameters:

int GPIOData0 Specify the GPIO that shall be used to transmit zeros. Use
one of the predefined constants GPIO0 through GPIO7 for spec-
ifying the GPIO.

int GPIOData1 Specify the GPIO that shall be used to transmit ones. Use one
of the predefined constants GPIO0 through GPIO7 for specifying
the GPIO.

int PulseTime Specify the pulse duration in microseconds.

int IntervalTime Specify the duration in microseconds between consecutive
pulses.

byte* Bits Reference to an array of bytes which represents a bit field
which holds the data to be sent.

int BitCount Specify the number of bits to be sent.

Return: None.

See timing diagram below for details about how the timing values are used:

Example:

Here is an example which shows minimum code for doing a Wiegand output:

// Init Section:
// Use GPIO2 and GPIO3 for Wiegand interface
GPIOConfigureOutputs(GPIO2 | GPIO3,GPIO_PUPD_NOPULL,GPIO_OTYPE_PUSHPULL);
// Enter idle level. In this case we have active low outputs
GPIOSetBits(GPIO2 | GPIO3);
// Prepare some Wiegand data:
byte Bits[4];
Bits[0] = 0x12;
Bits[1] = 0x34;
Bits[2] = 0x56;
Bits[3] = 0x78;
// Now send the bits
SendWiegand(GPIO2,GPIO3,100,1000,Bits,32);

Note:

Page 31 of 196

4 Peripheral Functions

• It is up to the App to complete Wiegand data with parity bits and decide number of
bits. In this way the App is fully flexible regarding data to be sent.

• The idle level of the Wiegand interface is determined by state of the outputs be-
fore calling SendWiegand. It must be setup by a separate call to GPIOSetBits or
GPIOClearBits depending on the requirements of the underlying hardware.

• The GPIOs might need additional circuitry against shortcut or voltage level depending
on the intended application.

4.1.3.2 Send Data in Omron Format

Use this function to send a bit stream via a software-emulated Omron interface. An Om-
ron interface uses two lines for data transmission, one for clock and one for the data bit
stream. Each GPIO can be individually configured to act as data or clock line. Note that the
integrated API LED-functions are working with GPIO0 to GPIO2 by default, so the Omron
interface lines should be selected carefully.

void SendOmron(int GPIOClock,int GPIOData,int T1,int T2,int T3,
byte* Bits,int BitCount);

Parameters:

int GPIOClock Specify the GPIO that shall be used for generating the clock
signal. Use one of the predefined constants GPIO0 through
GPIO7 for specifying the GPIO.

int GPIOData Specify the GPIO that shall be used for data transmission.
Use one of the predefined constants GPIO0 through GPIO7 for
specifying the GPIO.

int T1

int T2

int T3

byte* Bits Reference to an array of bytes which represents a bit field
which holds the data to be sent.

int BitCount Specify the number of bits to be sent.

Return: None.

See timing diagram below for details about how the timing values are used:

Page 32 of 196

4 Peripheral Functions

Example:

Here is an example which shows minimum code for doing a clock/data output:

// Init Section:
// Use GPIO2 and GPIO3 for the clock/data interface
GPIOConfigureOutputs(GPIO2 | GPIO3,GPIO_PUPD_NOPULL,GPIO_OTYPE_PUSHPULL);
// Enter idle level. In this case we have active low outputs
GPIOSetBits(GPIO2 | GPIO3);
// Prepare some data:
byte Bits[4];
Bits[0] = 0x12;
Bits[1] = 0x34;
Bits[2] = 0x56;
Bits[3] = 0x78;
// Now send the bits
SendOmron(GPIO2,GPIO3,500,1000,500,Bits,32);

Note:

• It is up to the App to complete data with parity bits and decide number of bits. In this
way the App is fully flexible regarding data to be sent.

• The idle level of the clock/data interface is determined by state of the outputs before
calling SendOmron. It must be setup by a separate call to GPIOSetBits or GPIOClearBits
depending on the requirements of the underlying hardware.

• The GPIOs might need additional circuitry against shortcut or voltage level depending
on the intended application.

4.2 Beeper

Use this function to sound a beep at the dedicated beeper port.

void Beep
(
int Volume,
int Frequency,
int OnTime,

Page 33 of 196

4 Peripheral Functions

int OffTime
);

Parameters:

int Volume Specify the volume in percent from 0 to 100.

int Frequency Specify the frequency in Hertz.

int OnTime Specify the duration of the beep in milliseconds.

int OffTime Specify the length of the pause after the beep. This is useful
for generating melodies. If this is not required, the parameter
may have the value 0.

Return: None.

4.3 LEDs

4.3.1 General Purpose LED Functions

These functions are related for usage with TWN4 Desktop and TWN4 Panel where the dif-
ferent LEDs have a dedicated connection scheme. The LEDs are connected as follows:

• GPIO0→ Red

• GPIO1→ Green

• GPIO2→ Yellow (Panel version only)

4.3.1.1 Initialization

Use this macro to initialize the respective GPIOs to drive LEDs.

LEDInit(LEDs);

Parameters:

LEDs Specify the GPIOs that shall be configured for LED operation.
Several GPIOs can be configured simultaneously by using the
bitwise or-operator (|). Use the predefined constants REDLED,
GREENLED or YELLOWLED for specifying the GPIOs.

Return: None.

Page 34 of 196

4 Peripheral Functions

4.3.1.2 Set LEDs On/Off

Use these macros to set one or several LEDs on/off.

LEDOn(LEDs);
LEDOff(LEDs);

Parameters:

LEDs Specify the LEDs that shall be set on/off. Several LEDs can
be handled simultaneously by using the bitwise or-operator (|).
Use the predefined constants REDLED, GREENLED or YELLOWLED
for specifying the LEDs.

Return: None.

4.3.1.3 Toggle LEDs

Use this macro to toggle one or several LEDs.

LEDToggle(LEDs);

Parameters:

LEDs Specify the LEDs that shall be toggled. Several LEDs can be
handled simultaneously by using the bitwise or-operator (|).
Use the predefined constants REDLED, GREENLED or YELLOWLED
for specifying the LEDs.

Return: None.

4.3.1.4 Blink LEDs

Use this macro to let one or several LEDs blink.

LEDBlink(LEDs, TimeOn, TimeOff);

Page 35 of 196

4 Peripheral Functions

Parameters:

LEDs Specify the LEDs that shall blink. Several LEDs can be han-
dled simultaneously by using the bitwise or-operator (|). Use
the predefined constants REDLED, GREENLED or YELLOWLED for
specifying the LEDs.

TimeOn Specify the on-time in milliseconds.

TimeOff Specify the off-time in milliseconds.

Return: None.

4.3.1.5 Get LED State

Use this macro to determine if a LED is on or off.

LEDIsOn(LED);

Parameters:

LED Specify the LED that shall be queried. Use one of the prede-
fined constants REDLED, GREENLED or YELLOWLED for specifying
the LED.

Return: If the queried LED is on, the return value is 1, otherwise it is
0.

4.3.2 Diagnostic LED

The TWN4 Core Module has one integrated LED that can be used for diagnostic purposes.
There is no initialization necessary.

4.3.2.1 Set Diagnostic LED On/Off

Use these functions to set the diagnostic LED on or off.

void DiagLEDOn(void);
void DiagLEDOff(void);

Parameters: None.

Return: None.

Page 36 of 196

4 Peripheral Functions

4.3.2.2 Toggle Diagnostic LED

Use this function to toggle the diagnostic LED.

void DiagLEDToggle(void);

Parameters: None.

Return: None.

4.3.2.3 Get LED State

Use this function to determine if the diagnostic LED is on or off.

bool DiagLEDIsOn(void);

Parameters: None.

Return: If the diagnostic LED is on, the return value is true, otherwise
it is false.

Page 37 of 196

5 Conversion Functions

5 Conversion Functions

5.1 Hexadecimal ASCII to Binary

5.1.1 Scan Hexadecimal Character

Convert an ASCII-character which represents a hexadecimal number into its binary repre-
sentation.

int ScanHexChar
(
byte Char
);

Parameters:

byte Char ASCII-coded hexadecimal character. The input value may be
one of the characters ’0’-’9’, ’a’-’f’ or ’A’-’F’.

Return: If the character is a valid hexadecimal expression, the return
value is the binary representation (a number between 0 and
15), else it is -1.

5.1.2 Scan Hexadecimal String

Convert an array of bytes containing ASCII characters which represents hexadecimal num-
bers into their binary representation. The conversion is done in place. This means that after
successful conversion, number of valid bytes is half of the given count of ASCII characters
(two hex digits represent one binary byte).

int ScanHexString
(
byte* ASCII,
int ByteCount
);

Page 38 of 196

5 Conversion Functions

Parameters:

byte* ASCII Reference to an array of ASCII-coded hexadecimal charac-
ters. The array may contain the characters ’0’-’9’, ’a’-’f’ or ’A’-
’F’. The array is also the destination for the operation.

int ByteCount Number of (ASCII-) bytes to be converted.

Return: Number of successfully converted bytes.

5.2 Binary to Hexadecimal ASCII

Convert a number, which is given as a bit field into ASCII format, and store it in an array of
bytes. The conversion is made in the following sequence:

1. Convert the binary data to a number of digits, which is determined by the parameter
MaxDigits. If MaxDigits is 0, then the number of digits is determined by the binary
data itself.

2. If the result of the conversion is less than the number of digits specified by MinDigits,
precede the converted number with zeros according to MinDigits.

int ConvertBinaryToString
(
const byte* SourceBits,
int StartBit,
int BitCnt,
char* String,
int Radix,
int MinDigits,
int MaxDigits
);

Page 39 of 196

5 Conversion Functions

Parameters:

const byte* SourceBits A reference to an array of bytes, which contains the bit field.

int StartBit Index of the first bit to be converted.

int BitCnt The number of bits, which are valid within the array of bytes.

char* String A reference to an array of bytes, which receives the result of
the conversion.

int Radix Base for conversion, use:
• 2 for binary conversion
• 8 for octal conversion
• 10 for decimal conversion
• 16 for hexadecimal conversion

int MinDigits Specifies the minimum number of digits, the output should
contain. If MinDigits is 0, then at least 1 digit is sent. If
MinDigits is greater than the actual width of the number to be
converted, then the number is preceded by zeros.

int MaxDigits Specifies the maximum number of digits, the output should
contain. This allows inhibit of leading digits of an output. If
MaxDigits is 0, then the number of digits is determined by the
given binary data itself.

Return: The actual number of ASCII bytes, which has been stored in
the array String.

Page 40 of 196

6 I2C Functions

6 I2C Functions

This chapter describes functions for accessing the I2C interface of TWN4. I2C is also known
as TWI (Two-Wire Interface).

6.1 Initialization/Deinitialization

6.1.1 I2CInit

bool I2CInit(int Mode);

Parameters:

int Mode This value specifies the mode of operation.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

6.1.2 I2CDeInit

void I2CDeInit(void);

Parameters: None.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

6.1.3 Examples

// Initialize as master
I2CInit(I2CMODE_MASTER);

// Initialize as slave.
// I2CMODE_SLAVE: Setup interface as slave
// 0x30: Address of of this slave
// I2CMODE_CHANNEL: Do communication via channels (this is the
// only currently available option, therefore
// a must to be specified)
I2CInit(I2CMODE_SLAVE | 0x30 | I2CMODE_CHANNEL);

Page 41 of 196

6 I2C Functions

6.2 Communication (Master)

6.2.1 I2CMasterStart

Generate a I2C start sequence.

void I2CMasterStart(void);

Parameters: None.

Return: None.

6.2.2 I2CMasterStop

Generate a I2C stop sequence.

void I2CMasterStop(void);

Parameters: None.

Return: None.

6.2.3 I2CMasterTransmitByte

Transmit one byte to a slave.

void I2CMasterTransmitByte(byte Byte);

Parameters:

byte Byte The byte to be transmitted to the slave.

Return: None.

6.2.4 I2CMasterReceiveByte

Receive one byte from a slave.

byte I2CMasterReceiveByte(void);

Parameters: None.

Return: The byte read from the slave.

Page 42 of 196

6 I2C Functions

6.2.5 I2CMasterBeginWrite

Begin a write sequence. This will send the target slave address together with R/W-bit set to
write.

void I2CMasterBeginWrite(int Address);

Parameters:

int Address The target slave address, a value from 0 to 127.

Return: None.

6.2.6 I2CMasterBeginRead

Begin a read sequence. This will send the target slave address together with R/W-bit set to
read.

void I2CMasterBeginRead(int Address);

Parameters:

int Address The target slave address, a value from 0 to 127.

Return: None.

6.2.7 I2CMasterSetAck

Set ACK state of the master. This ACK will be sent after receiption of one byte from the
slave.

void I2CMasterSetAck(bool SetOn);

Parameters:

bool SetOn Set this value to true to turn acknowledge on or false to turn
acknowledge off. Definitions ON or OFF may be used for better
readability.

Return: None.

6.2.8 Examples

// This sample demonstrates transmission and receiption of data
// to/from a I2C-slave

// This is the address of the slave

Page 43 of 196

6 I2C Functions

const int I2CAddress = 0x30;
// Init the I2C port
I2CInit(I2CMODE_MASTER);

// Send two bytes to the slave
I2CMasterStart();
I2CMasterBeginWrite(I2CAddress);
I2CMasterTransmitByte(0x12);
I2CMasterTransmitByte(0x34);
I2CMasterStop();

// Receive three bytes from the slave
byte Bytes[3];
I2CMasterStart();
I2CMasterBeginRead(I2CAddress);
// All bytes except last byte require an ACK to be sent
I2CMasterSetAck(ON);
Bytes[0] = I2CMasterReceiveByte();
Bytes[1] = I2CMasterReceiveByte();
// Turn off ACK before reading last byte
I2CMasterSetAck(OFF);
Bytes[2] = I2CMasterReceiveByte();
I2CMasterStop();

6.3 Communication (Slave)

Communication as a I2C slaves works with well-defined I2C packets, which must be sent
between master and slave (TWN4).

The communication is performed via normal communication channels. Therefore, for trans-
mitting and receiving data, the normal IO-functions must be used. These are WriteByte,
ReadByte and so on. In case of communication via I2C, the channel 4 must be used. There
is a definition for this channel, which is CHANNEL_I2C.

As a conclusion, TWN4 offers a easy method of changing communication from USB or
RS232 to I2C just by changing the communication channel. Only care must be taken to
avoid buffer overflow. This can be achieved by calling appropriate IO-functions TestEmpty
and TestFull. On the other hand many communication protocols avoid a buffer overflow
by their inherent flow of communication (e.g. command/response protocol).

The specification for the format of the packets sent/reveived on the I2C bus is as fol-
lows:

Page 44 of 196

6 I2C Functions

6.3.1 Slave to Master

1 Byte Address/Read

1 Byte Buffer status: Bits 7..4 hold the number of bytes, which are
available to be read from the slave. Bits 3..0 hold the maxi-
mum number of bytes, which may be sent to slave.

n Bytes Payload, where n is 0..15. Note: Due to the fact, that ACK
must be turned off one byte before the master receives last
byte, it is useful to check buffer status and receive bytes in
separate read operations.

6.3.2 Master to Slave

1 Byte Address/Write

n Bytes Payload, where n is 1..15

6.3.3 Examples

This is a implementation of a I2C master communication, which routes USB- or RS232-
interface to the I2C-interface of a TWN4 Core Module. In order to test this example, two
TWN4 Core Modules are required:

• 1 TWN4 Core Module, which is running as I2C slave

• 1 TWN4 Core Module, which is running as I2C master.

//
// TWN4 App: I2C master, which routes USB or RS232-traffic to I2C
//
#include "twn4.sys.h"
#include "apptools.h"

int main(void)
{

const int I2CAddress = 0x30;
// USB or RS232 depends on which cable is connected
int HostChannel = GetHostChannel();

I2CInit(I2CMODE_MASTER);
while (true)
{

int I2CRXTXCount;
int TransferCount;

I2CMasterStart();

Page 45 of 196

6 I2C Functions

I2CMasterBeginRead(I2CAddress);
I2CMasterSetAck(OFF);
I2CRXTXCount = I2CMasterReceiveByte();
I2CMasterStop();

// **
// ****** Direction Host -> I2C *****************************
// **
TransferCount = MIN(GetByteCount(HostChannel,DIR_IN),

I2CRXTXCount & 0x0F);
if (TransferCount > 0)
{

I2CMasterStart();
I2CMasterBeginWrite(I2CAddress);
while (TransferCount-- > 0)

I2CMasterTransmitByte(ReadByte(HostChannel));
I2CMasterStop();

}

// **
// ****** Direction I2C -> Host *****************************
// **
TransferCount = MIN(GetBufferSize(HostChannel,DIR_OUT)-

GetByteCount(HostChannel,DIR_OUT),
I2CRXTXCount >> 4);

if (TransferCount > 0)
{

I2CMasterStart();
I2CMasterBeginRead(I2CAddress);
I2CMasterSetAck(ON);
// Flush RX/TX byte count
I2CMasterReceiveByte();
// Read data except last byte
while (TransferCount-- > 1)

WriteByte(HostChannel,I2CMasterReceiveByte());
// Turn off ACK before reading last byte
I2CMasterSetAck(OFF);
WriteByte(HostChannel,I2CMasterReceiveByte());
I2CMasterStop();

}
}

}

Page 46 of 196

7 RF Functions

7 RF Functions

7.1 SearchTag

Use this function to search a transponder in the reading range of TWN4. TWN4 is searching
for all types of transponders, which have been specified via function SetTagTypes. If a
transponder has been found, tag type, length of ID and ID data itself are returned.

bool SearchTag(int *TagType,int *IDBitCount,byte *ID,int MaxIDBytes);

Parameters: None.

int *TagType Pointer to an integer, which receives the type of tag, which
has been found.

int *IDBitCount Pointer to an integer, which receives the number of bits(!), the
ID consists of.

byte *ID Pointer to an array of bytes, which contain ID data, if a
transponder has been found.

int MaxIDBytes A value, which specifies the buffer size of ID. No more than
this specified number of bytes will be copied to the location
specified by ID.

Return: If a transponder has been found, the function returns true,
otherwise it returns false.

7.2 SetRFOff

Turn off RF field. If no further operations are required on a transponder found via function
SearchTag you may use this command to minimize power consumption of TWN4.

void SetRFOff(void);

Parameters: None.

Return: None.

Page 47 of 196

7 RF Functions

7.3 SetTagTypes

Use this function to configure the transponders, which are searched by function SearchTag.

void SetTagTypes(unsigned int LFTagTypes,unsigned int HFTagTypes);

Parameters:

unsigned int LFTagTypes Specifies transponder types at the frequency 125.0 kHz -
134.2 kHz.

unsigned int HFTagTypes Specifies transponder types at the frequency 13.56 MHz.

Return: None.

Page 48 of 196

7 RF Functions

7.3.1 Supported Types of LF Tags (125 kHz - 134.2 kHz)

Definition Frequency Name Status

LFTAG_EM4102 LF EM4102 / CASI-RUSCO Supported

LFTAG_HITAG1S LF HITAG 1 / HITAG S Supported

LFTAG_HITAG2 LF HITAG 2 Supported

LFTAG_EM4150 LF EM4x50 Supported

LFTAG_AT5555 LF AT5555 / AT5557 / Supported, delivers no ID

AT5577 / Q5

LFTAG_ISOFDX LF ISO FDX-B / EM4105 Supported

LFTAG_EM4026 LF EM4026 On request

LFTAG_HITAGU LF HITAG µ On request

LFTAG_EM4305 LF EM4305 On roadmap

LFTAG_HIDPROX LF HID Prox Supported with option P

LFTAG_TIRIS LF ISO HDX / TIRIS Supported

LFTAG_COTAG LF Cotag Supported by option P

LFTAG_IOPROX LF ioProx Supported by option P

LFTAG_INDITAG LF Indala Supported by option P

LFTAG_HONEYTAG LF NexWatch Supported by option P

LFTAG_AWID LF AWID Supported

LFTAG_GPROX LF G-Prox Supported, read of hash
value only

LFTAG_PYRAMID LF Pyramid Supported

LFTAG_KERI LF Keri Supported, read of raw data
only

Page 49 of 196

7 RF Functions

7.3.2 Supported Types of HF Tags (13.56 MHz)

Definition Frequency Name Status

HFTAG_MIFARE HF ISO14443A / MIFARE Supported

HFTAG_ISO14443B HF ISO14443B Supported

HFTAG_ISO15693 HF ISO15693 / Tag-it Supported

HFTAG_LEGIC HF LEGIC Supported by
TWN4 LEGIC NFC

HFTAG_HIDICLASS HF HID iCLASS Supported, read of UID, read
of PAC with option I

HFTAG_FELICA HF FeliCa Supported, read of UID only

HFTAG_SRX HF SRC Supported

HFTAG_NFCP2P HF NFC Peer-to-Peer Supported

In order to search for more than one type of transponder, several types can be combined.

Note:

The use of the predefined macro TAGMASK is mandatory, even if only one type of tag is
specified. Here is an example which is searching for EM4102 and HITAG 1 at LF and for
MIFARE at HF:

Example:

SetTagTypes(TAGMASK(LFTAG_EM4102) | TAGMASK(LFTAG_HITAG1S),
TAGMASK(HFTAG_MIFARE));

7.4 GetTagTypes

This function returns the transponder types currently being searched for by function SearchTag
separated by frequency (LF and HF).

void GetTagTypes(unsigned int *LFTagTypes,unsigned int *HFTagTypes);

Parameters:

unsigned int *LFTagTypesPointer to a value, which receives the LF tag types.

unsigned int *HFTagTypesPointer to a value, which receives the HF tag types.

Return: None.

Page 50 of 196

7 RF Functions

7.5 GetSupportedTagTypes

This function returns the transponder types, which are actually supported by the individual
TWN4 separated by frequency (LF and HF). Also the P-option is taken into account. This
means, if the specific TWN4 has no option P, the appropriate transponders are not returned
as supported type of transponder.

void GetSupportedTagTypes(unsigned int *LFTagTypes,
unsigned int *HFTagTypes);

Parameters:

unsigned int *LFTagTypesPointer to a value, which receives the LF tag types.

unsigned int *HFTagTypesPointer to a value, which receives the HF tag types.

Return: None.

Page 51 of 196

8 HITAG 1- and HITAG S-Specific Transponder Operations

8 HITAG 1- and HITAG S-Specific
Transponder Operations

This chapter describes functions for accessing HITAG 1 and HITAG S transponders. HITAG
1 and HITAG S are very similar. Therefore, same set of functions can be used for both
types.

HITAG 1 and HITAG S transponder are available with different memory sizes. Due to this, the
maximum address, which can be specified depends also on the specific type of transpon-
der:

Type Memory
Size (Bits)

Memory
Size (Bytes)

Valid Address
Range

HITAG 1 2048 256 0-63

HITAG S
2048

2048 256 0-63

HITAG S
256

256 32 0-7

8.1 Read/Write Data

8.1.1 Hitag1S_ReadPage

Read one page (4 bytes) from the transponder.

bool Hitag1S_ReadPage(int PageAddress,byte *Page);

Parameters:

int PageAddress Specifies the address of the page to be read.

byte *Page Pointer to an array of 4 bytes where page data is stored after
a successful operation.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 52 of 196

8 HITAG 1- and HITAG S-Specific Transponder Operations

8.1.2 Hitag1S_WritePage

Write one page (4 bytes) to the transponder.

bool Hitag1S_WritePage(int PageAddress,const byte *Page);

Parameters:

int PageAddress Specifies the address of the page to be written.

byte *Page Pointer to an array of 4 bytes which are written to the transpon-
der.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

8.1.3 Hitag1S_ReadBlock

Read 1 to 4 consecutive pages (4 to 16 bytes) from the transponder. The number of pages
depends on the specified address: The read process is stopped as soon as the read address
reaches a block boundary, which is a multiple of 4. If BlockAddress already specifies a
block boundary, the maximum of 4 pages will be read.

bool Hitag1S_ReadBlock(int BlockAddress,
byte *Block,int *BytesRead);

Parameters:

int BlockAddress Specifies the first page address of the block to be read.

byte *Page Pointer to an array of 4 to 16 bytes which are read from the
transponder.

int *BytesRead Pointer to an integer, which receives the number of actually
read bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

8.1.4 Hitag1S_WriteBlock

Write 1 to 4 consecutive pages (4 to 16 bytes) to the transponder. The number of pages
depends on the specified address: The write process is stopped as soon as the write ad-
dress reaches a block boundary, which is a multiple of 4. If BlockAddress already specifies
a block boundary, the maximum of 4 pages will be written.

bool Hitag1S_WriteBlock(int BlockAddress,const byte *Block,
int *BytesWritten);

Page 53 of 196

8 HITAG 1- and HITAG S-Specific Transponder Operations

Parameters:

int BlockAddress Specifies the first page address of the block to be written.

byte *Page Pointer to an array of 4 to 16 bytes which are written to the
transponder.

int *BytesWritten Pointer to an integer, which receives the number of actually
written bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

8.2 Hitag1S_Halt

This functions will halt a currently selected transponder. The transponder will not participate
in any further transponder communication till the RF field is turned off and on again.

bool Hitag1S_Halt(void);

Parameters: None.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 54 of 196

9 HITAG 2-Specific Transponder Operations

9 HITAG 2-Specific Transponder Operations

This chapter describes functions for accessing HITAG 2 transponders.

HITAG 2 is a transponder with a memory size of 256 bits, thus 32 bytes. It stores data
organized in pages, where one page is 4 bytes. There are 8 pages, which can be accessed
with addresses in the range from 0 to 7.

HITAG 2 can be operated in two modes: Password mode and crypto mode.

Note:

TWN4 supports password mode of HITAG 2 only.

9.1 Read/Write Data

9.1.1 Hitag2_ReadPage

Read one page (4 bytes) from the transponder.

bool Hitag2_ReadPage(int PageAddress,byte *Page);

Parameters:

byte PageAddress Specifies the address of the page to be read.

byte *Page Pointer to an array of 4 bytes where page data is stored after
a successful operation.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

9.1.2 Hitag2_WritePage

Write one page (4 bytes) to the transponder.

bool Hitag2_WritePage(byte PageAddress,const byte *Page);

Page 55 of 196

9 HITAG 2-Specific Transponder Operations

Parameters:

byte PageAddress Specifies the address of the page to be written.

byte *Page Pointer to an array of 4 bytes which are written to the transpon-
der.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

9.1.3 Hitag2_SetPassword

During search for HITAG 2, TWN4 is using a password for doing a login to the transponder.
The default password after a reset is 0x4D,0x49,0x4B,0x52. This is the well-known default
password for HITAG 2.

void Hitag2_SetPassword(const byte *Password);

Parameters:

const byte *Password Pointer to an array of 4 bytes, which contains the new pass-
word.

Return: None.

9.2 Hitag2_Halt

This functions will halt a currently selected transponder. The transponder will not participate
in any further transponder communication till the RF field is turned off and on again.

bool Hitag2_Halt(void);

Parameters: None.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 56 of 196

10 EM4x50-Specific Transponder Operations

10 EM4x50-Specific Transponder
Operations

This chapter describes functions for accessing EM4x50 transponders. There are several
chips, which are compatible to each other within this family. These are: EM4050, EM4150,
EM4450, EM4550. According to the datasheet of the EM4x50 transponder, one word is
meant to be 4 bytes.

10.1 Functions

Perform a login operation to the transponder.

10.1.1 EM4150_Login

bool EM4150_Login(const byte *Password)

Parameters:

const byte *Password Pointer to an array of 4 bytes which contains the password.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.1.2 EM4150_ReadWord

Read one word (4 bytes) from the transponder.

bool EM4150_ReadWord(int Address,byte *Word)

Parameters:

int Address Specifies the address of the page to be read. The valid ad-
dress range is from 0 to 33.

byte *Word Pointer to an array of 4 bytes which contains data read from
the transponder.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 57 of 196

10 EM4x50-Specific Transponder Operations

10.1.3 EM4150_WriteWord

Write one word (4 bytes) to the transponder.

bool EM4150_WriteWord(int Address,const byte *Word)

Parameters:

int Address Specifies the address of the page to be written.

const byte *WordData Pointer to an array of 4 bytes which contains data to be written
to the transponder.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

10.1.4 EM4150_WritePassword

Change the password stored on a transponder.

bool EM4150_WritePassword(const byte *ActualPassword,const byte *NewPassword)

Parameters:

const byte
*ActualPassword

Pointer to an array of 4 bytes which specifies the current pass-
word of the transponder.

const byte
*NewPassword

Pointer to an array of 4 bytes which specifies the password to
be written to the transponder.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 58 of 196

11 AT55xx-Specific Transponder Operations

11 AT55xx-Specific Transponder Operations

This chapter describes functions for accessing AT55xx transponders. There are several
chips, which are compatible to each other within this family. These are: e5550, e5551,
T5555, T5555B, T5556, T5557, ATA5567, ATA5577. Note: T5552 and T5558 are not sup-
ported by this API.

11.1 Control Functions

11.1.1 AT55_Begin

The function AT55_Begin must be used before subsequent read or write access to the
transponder in question.

void AT55_Begin(void);

Parameters: None.

Return: None.

Background:

Normally, in order to begin any read/write access to a transponder, the TWN4 system pro-
vides the function SearchTag. This function searches for a transponder and keeps the RF
in appropriate condition to allow subsequent read- and write access.

This sequence is not applicable for the AT55xx family of transponders for two reasons:

• The transponder does not contain a serial number

• The transponder does not send data in a well-known standard format

The way out of this situation is the function AT55_Begin, which does not return any transpon-
der data but turns on RF field for subsequent read-/write operations.

11.2 Read Data

Requirements:

Page 59 of 196

11 AT55xx-Specific Transponder Operations

The firmware of TWN4 supports read of data only, if the modulation of the transponder is
configured to manchester coding with a bitrate of RF/128 up to RF/8.

Furthermore, TWN4 can be set up to support sequence terminator turned on or off.

The default setup is RF/64 with sequence terminator turned off. In order to choose a different
configuration the function SetParameters must be used. Here is an example of how use of
RF/32 is programmed:

const byte MyRF32Config[] = { AT55_BITRATE, 1, 32, TLV_END };
SetParameters(MyRF32Config,sizeof(MyRF32Config));

Example of how to turn on sequence terminator on and use RF/40:

const byte MyRF40Config[] =
{

AT55_OPTIONS, 1, AT55_OPT_SEQUENCETERMINATOR_ON,
AT55_BITRATE, 1, 40,
TLV_END

};
SetParameters(MyRF40Config,sizeof(MyRF40Config));

11.2.1 AT55_ReadBlock

Read one block (4 bytes) from the transponder.

bool AT55_ReadBlock(int Address,byte *Data);

Parameters:

int Address Specifies the address of the page to be read.

byte *Data Pointer to an array of 4 bytes which contains data read from
the transponder.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

11.2.2 AT55_ReadBlockProtected

Read one block (4 bytes) from a password-protected transponder.

bool AT55_ReadBlockProtected(int Address,byte *Data,const byte *Password);

Page 60 of 196

11 AT55xx-Specific Transponder Operations

Parameters:

int Address Specifies the address of the page to be read.

byte *Data Pointer to an array of 4 bytes which contains data read from
the transponder.

const byte *Password Pointer to an array of 4 bytes which contains the password.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

11.3 Write Data

11.3.1 AT55_WriteBlock

Write one block (4 bytes) to the transponder.

bool AT55_WriteBlock(int Address,const byte *Data);

Parameters:

int Address Specifies the address of the page to be written.

const byte *Data Pointer to an array of 4 bytes which contains data to be written
to the transponder.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

11.3.2 AT55_WriteBlockProtected

Write one block (4 bytes) to a password-protected transponder.

bool AT55_WriteBlockProtected(int Address,const byte *Data,const byte *Password);

Parameters:

int Address Specifies the address of the page to be written.

const byte *Data Pointer to an array of 4 bytes which contains data to be written
to the transponder.

const byte *Password Pointer to an array of 4 bytes which contains the password.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 61 of 196

11 AT55xx-Specific Transponder Operations

11.3.3 AT55_WriteBlockAndLock

Write one block (4 bytes) to a transponder and lock the written data. Locking data means,
that it is not possible to modify data contained in this block.

bool AT55_WriteBlockAndLock(int Address,const byte *Data);

Parameters:

int Address Specifies the address of the page to be written.

const byte *Data Pointer to an array of 4 bytes which contains data to be written
to the transponder.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

11.3.4 AT55_WriteBlockProtectedAndLock

Write one block (4 bytes) to a password-protected transponder and lock the written data.
Locking data means, that it is not possible to modify data contained in this block.

bool AT55_WriteBlockProtectedAndLock(int Address,const byte *Data,const byte *Password);

Parameters:

int Address Specifies the address of the page to be written.

const byte *Data Pointer to an array of 4 bytes which contains data to be written
to the transponder.

const byte *Password Pointer to an array of 4 bytes which contains the password.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 62 of 196

12 TILF (TIRIS) Functions

12 TILF (TIRIS) Functions

This chapter describes functions for accessing Texas Instruments Low Frequency transpon-
ders (TILF). This type of transponder was formerly also known as TIRIS.

Note:

It is highly recommended to also study datasheets of according transponders. Datasheets
are available from Texas Instruments.

12.1 Search Function

12.1.1 TILF_SearchTag

Search for a TILF tag. This function can be used directly instead of the general search
function SearchTag. The function doing a search for a TILF tag in two different ways: First,
a tag is search via a call of function TILF_ChargeOnlyRead. Second, a tag is searched via
function TILF_MUGeneralReadPage, address 3.

bool TILF_SearchTag(int *IDBitCount,byte *ID,int MaxIDBytes);

Parameters:

int *IDBitCount A pointer to an integer, which receives the number of ac-
tually read bits(!). Due to the nature of the functions
TILF_ChargeOnlyRead and TILF_MUGeneralReadPage, the
number of received bits is either 32 or 64.

byte *ID A pointer to an array of bytes, which receives the read ID.
Due to the nature of the functions TILF_ChargeOnlyRead and
TILF_MUGeneralReadPage, the number of received bytes is
either 4 or 8.

int MaxIDBytes The maximum number of bytes, which will be copied to ID

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 63 of 196

12 TILF (TIRIS) Functions

12.2 Single-Page Read/Write Function

12.2.1 TILF_ChargeOnlyRead

Search for a single page transponder. This might be a read-only or a read/write transpon-
der. Only transponders are detected, where ID is stored under use of a CCITT CRC. If
a transponder is programmed in a different way, consider using TILF_ChargeOnlyReadLo,
which allows to read entire content of transponder W/O CRC check.

bool TILF_ChargeOnlyRead(byte *ReadData);

Parameters:

byte *ReadData A pointer to an array of 8 bytes, which receives checked ID
data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.2.2 TILF_ChargeOnlyReadLo

Search for a single page transponder. This might be a read-only or a read/write transponder.
No CRC check is performed, thus allowing to read also custom programmed tags. The
interpretation of data should be known by the solution builder.

bool TILF_ChargeOnlyReadLo(byte *ReadData);

Parameters:

byte *ReadData A pointer to an array of 16 bytes, which receives unchecked
ID data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.2.3 TILF_SPProgramPage

Write data to a single-page read/write transponder by using CCITT CRC.

bool TILF_SPProgramPage(const byte *WriteData,byte *ReadData);

Page 64 of 196

12 TILF (TIRIS) Functions

Parameters:

const byte
*WriteData

A pointer to an array of 8 bytes, which will be written to the
transponder.

byte *ReadData A pointer to an array of 8 bytes, which receives checked re-
sponse from the transponder.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.2.4 TILF_SPProgramPageLo

Write data to a single-page read/write transponder.

bool TILF_SPProgramPageLo(const byte *WriteData,byte *ReadData);

Parameters:

const byte
*WriteData

A pointer to an array of 10 bytes, which will be written to the
transponder.

byte *ReadData A pointer to an array of 16 bytes, which receives unchecked
response from the transponder.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.3 Multi-Page Read/Write Function

12.3.1 TILF_MPGeneralReadPage

General read of data from a multi-page transponder (MPT).

bool TILF_MPGeneralReadPage(int Address,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.3.2 TILF_MPSelectiveReadPage

Selective read of data from a multi-page transponder (SAMPT or SAMPTS).

Page 65 of 196

12 TILF (TIRIS) Functions

bool TILF_MPSelectiveReadPage(
int Address,const byte *SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

const byte
*SelectiveAddress

Pointer to an array of 3 bytes (24 bits) which provides the
selective address.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.3.3 TILF_MPProgramPage

Program one page to a multi-page transponder (MPT).

bool TILF_MPProgramPage(
int Address,const byte *WriteData,byte *ReadData);

Parameters:

int Address The page address, where data will be programmed to.

const byte
*WriteData

A pointer to an array of 8 bytes, which will be programmed.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.3.4 TILF_MPSelectiveProgramPage

Selective program of one page to a multi-page transponder (SAMPT or SAMPTS).

bool TILF_MPSelectiveProgramPage(
int Address,const byte *SelectiveAddress,
const byte *WriteData,byte *ReadData);

Page 66 of 196

12 TILF (TIRIS) Functions

Parameters:

int Address The page address, where data will be programmed to.

const byte
*SelectiveAddress

Pointer to an array of 3 bytes (24 bits) which provides the
selective address.

const byte
*WriteData

A pointer to an array of 8 bytes, which will be programmed.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.3.5 TILF_MPLockPage

Lock one page on a multi-page transponder (MPT).

bool TILF_MPLockPage(int Address,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.3.6 TILF_MPSelectiveLockPage

Selective lock one page on a multi-page transponder (SAMPT or SAMPTS).

bool TILF_MPSelectiveLockPage(
int Address,const byte *SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

const byte
*SelectiveAddress

Pointer to an array of 3 bytes (24 bits) which provides the
selective address.

byte *ReadData A pointer to an array of 8 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 67 of 196

12 TILF (TIRIS) Functions

12.3.7 TILF_MPGeneralReadPageLo

General read of data from a multi-page transponder (MPT) W/O CRC-check.

bool TILF_MPGeneralReadPageLo(int Address,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.3.8 TILF_MPSelectiveReadPageLo

Selective read of data from a multi-page transponder (SAMPT or SAMPTS) W/O CRC-
check.

bool TILF_MPSelectiveReadPageLo(
int Address,const byte *SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

const byte
*SelectiveAddress

Pointer to an array of 3 bytes (24 bits) which provides the
selective address.

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.3.9 TILF_MPProgramPageLo

Program one page to a multi-page transponder (MPT) W/O CRC-check.

bool TILF_MPProgramPageLo(
int Address,const byte *WriteData,byte *ReadData);

Page 68 of 196

12 TILF (TIRIS) Functions

Parameters:

int Address The page address, where data will be programmed to.

const byte
*WriteData

A pointer to an array of 10 bytes, which will be programmed.

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.3.10 TILF_MPSelectiveProgramPageLo

Selective program of one page to a multi-page transponder (SAMPT or SAMPTS) W/O
CRC-check.

bool TILF_MPSelectiveProgramPageLo(
int Address,const byte *SelectiveAddress,
const byte *WriteData,byte *ReadData);

Parameters:

int Address The page address, where data will be programmed to.

const byte
*SelectiveAddress

Pointer to an array of 3 bytes (24 bits) which provides the
selective address.

const byte
*WriteData

A pointer to an array of 10 bytes, which will be programmed.

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.3.11 TILF_MPLockPageLo

Lock one page on a multi-page transponder (MPT) W/O CRC-check.

bool TILF_MPLockPageLo(int Address,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 69 of 196

12 TILF (TIRIS) Functions

12.3.12 TILF_MPSelectiveLockPageLo

Selective lock one page on a multi-page transponder (SAMPT or SAMPTS) W/O CRC-
check.

bool TILF_MPSelectiveLockPageLo(
int Address,const byte *SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

const byte
*SelectiveAddress

Pointer to an array of 3 bytes (24 bits) which provides the
selective address.

byte *ReadData A pointer to an array of 16 bytes, which receives data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.4 Multi-Usage Read/Write Function

12.4.1 TILF_MUGeneralReadPage

General read of one page from a multi-usage transponder (MUSA).

bool TILF_MUGeneralReadPage(int Address,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.4.2 TILF_MUSelectiveReadPage

Selective read of one page from a multi-usage transponder (MUSA).

bool TILF_MUSelectiveReadPage(
int Address,int SelectiveAddress,byte *ReadData);

Page 70 of 196

12 TILF (TIRIS) Functions

Parameters:

int Address The page address, where data will be read from.

int SelectiveAddress A value which specifies the 8-bit selective address.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.4.3 TILF_MUSpecialReadPage

Special read of one page from a multi-usage transponder (MUSA).

bool TILF_MUSpecialReadPage(
int Address,const byte *SpecialAddress1,
const byte *SpecialAddress2,byte *ReadData);

Parameters:

int Address The page address, where data will be read from.

const byte
*SpecialAddress1

Pointer to an array of 5 bytes (40 bits) which provides the
special address 1.

const byte
*SpecialAddress2

Pointer to an array of 3 bytes (24 bits) which provides the
special address 2.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.4.4 TILF_MUProgramPage

Program one page to a multi-usage transponder (MUSA).

bool TILF_MUProgramPage(int Address,const byte *WriteData,byte *ReadData);

Parameters:

int Address The page address, where data will be programmed to.

const byte
*WriteData

A pointer to an array of 5 bytes, which will be programmed.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 71 of 196

12 TILF (TIRIS) Functions

12.4.5 TILF_MUSelectiveProgramPage

Selective program of one page to a multi-usage transponder (MUSA).

bool TILF_MUSelectiveProgramPage(
int Address,int SelectiveAddress,
const byte *WriteData,byte *ReadData);

Parameters:

int Address The page address, where data will be programmed to.

int SelectiveAddress A value which specifies the 8-bit selective address.

const byte
*WriteData

A pointer to an array of 5 bytes, which will be programmed.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.4.6 TILF_MUSpecialProgramPage

Special program of one page to a multi-usage transponder (MUSA).

bool TILF_MUSpecialProgramPage(
int Address,const byte *SpecialAddress1,
const byte *SpecialAddress2,const byte *WriteData,
byte *ReadData);

Parameters:

int Address The page address, where data will be programmed to.

const byte
*SpecialAddress1

Pointer to an array of 5 bytes (40 bits) which provides the
special address 1.

const byte
*SpecialAddress2

Pointer to an array of 3 bytes (24 bits) which provides the
special address 2.

const byte
*WriteData

A pointer to an array of 5 bytes, which will be programmed.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.4.7 TILF_MULockPage

Lock one page of a multi-usage transponder (MUSA).

Page 72 of 196

12 TILF (TIRIS) Functions

bool TILF_MULockPage(int Address,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.4.8 TILF_MUSelectiveLockPage

Selective lock of one page of a multi-usage transponder (MUSA).

bool TILF_MUSelectiveLockPage(
int Address,int SelectiveAddress,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

int SelectiveAddress A value which specifies the 8-bit selective address.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

12.4.9 TILF_MUSpecialLockPage

Special lock of one page of a multi-usage transponder (MUSA).

bool TILF_MUSpecialLockPage(
int Address,const byte *SpecialAddress1,
const byte *SpecialAddress2,byte *ReadData);

Parameters:

int Address The page address, which will be locked.

const byte
*SpecialAddress1

Pointer to an array of 5 bytes (40 bits) which provides the
special address 1.

const byte
*SpecialAddress2

Pointer to an array of 3 bytes (24 bits) which provides the
special address 2.

byte *ReadData A pointer to an array of 7 bytes, which receives page data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 73 of 196

13 ISO14443 Transponder Operations

13 ISO14443 Transponder Operations

This chapter handles specific operations for transparent access of ISO14443A/B compliant
transponders. Before these functions can be used, the transponder must have been se-
lected using the function SearchTag(...).

13.1 ISO14443A

13.1.1 Get ATQA

This function delivers the ATQA (Answer To Request TypeA) of the last detected ISO14443A
compliant transponder.

bool ISO14443A_GetATQA(byte* ATQA);

Parameters:

byte* ATQA After successful completion of this function, the buffer referred
by this parameter holds the ATQA of the transponder. The
function returns two bytes of data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

13.1.2 Get SAK

This function delivers the SAK (Select Acknowledge) of the last detected ISO14443A com-
pliant transponder.

bool ISO14443A_GetSAK(byte* SAK);

Page 74 of 196

13 ISO14443 Transponder Operations

Parameters:

byte* SAK After successful completion of this function, the buffer referred
by this parameter holds the SAK of the transponder. The func-
tion returns one byte of data.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

13.1.3 Get ATS

This function delivers the ATS (Answer To Select) of a ISO14443A layer 4 transponder.

bool ISO14443A_GetATS
(
byte* ATS,
int* ATSByteCnt,
int MaxATSByteCnt
);

Parameters:

byte* ATS After successful completion of this function, the buffer referred
by this parameter holds the ATS which was read from the
transponder. Take care for adequate dimensioning.

int* ATSByteCnt After successful completion of this function, this parameter
holds the number of bytes, the ATS contains.

int MaxATSByteCnt This parameter holds the array-size of ATS in bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

13.2 ISO14443B

13.2.1 Get ATQB

This function delivers the ATQB (Answer To Request TypeB) of the last detected ISO14443B
compliant transponder.
Note: This function can only be called on TWN4 MIFARE NFC.

bool ISO14443B_GetATQB(byte* ATQB, int* ATQBByteCnt, int MaxATQBByteCnt);

Page 75 of 196

13 ISO14443 Transponder Operations

Parameters:

byte* ATQB After successful completion of this function, the buffer referred
by this parameter holds the ATQB of the transponder. Take
care for adequate dimensioning, the ATQB usually has 12 or
13 bytes in length.

int* ATQBByteCnt After successful completion of this function, this parameter
holds the number of bytes of ATQB.

int MaxATQBByteCnt This parameter holds the array-size of ATQB in bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

13.2.2 Get Answer to ATTRIB

This function delivers the transponder’s answer to the ATTRIB command, which is sent
automatically during selection process by the reader.
Note: This function can only be called on TWN4 MIFARE NFC.

bool ISO14443B_GetAnswerToATTRIB
(
byte* AnswerToATTRIB,
int* AnswerToATTRIBByteCnt,
int MaxAnswerToATTRIBByteCnt
);

Parameters:

byte* AnswerToATTRIB After successful completion of this function, the buffer referred
by this parameter holds the AnswerToATTRIB of the transpon-
der. Take care for adequate dimensioning, AnswerToATTRIB
can have one or more bytes in length.

int*
AnswerToATTRIBByteCnt

After successful completion of this function, this parameter
holds the number of bytes of AnswerToATTRIB.

int
MaxAnswerToATTRIBByteCnt

This parameter holds the array-size of AnswerToATTRIB in
bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

13.3 Check Presence

This function can be used to probe if a ISO14443-4 transponder is still in reading range. The
internal state of the transponder remains unchanged.

Page 76 of 196

13 ISO14443 Transponder Operations

Note: This function can only be called on TWN4 MIFARE NFC.

bool ISO14443_4_CheckPresence(void);

Parameters: None.

Return: If the transponder is still in range, the return value is true,
otherwise it is false.

13.4 ISO14443-4 Transparent Data Exchange

This function can be used for transparent exchange of data between reader and ISO14443-
4 transponders. All framing of layer 4 subset is already done by the reader, so only the
payload needs to be passed to the function.

bool ISO14443_4_TDX
(
byte* TXRX,
int TXByteCnt,
int* RXByteCnt,
int MaxRXByteCnt
);

Parameters:

byte* TXRX This buffer holds the byte-string that shall be transmitted to
the transponder. The response of the transponder is also re-
turned by this parameter. Take care for adequate dimension-
ing.

int TXByteCnt This parameter holds the number of bytes that shall be trans-
mitted to the transponder.

int* RXByteCnt After successful completion of this function, this parameter
holds the number of bytes that the transponder response con-
tains.

int MaxRXByteCnt This parameter holds the array-size of TXRX in bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 77 of 196

14 MIFARE Classic Specific Transponder Operations

14 MIFARE Classic Specific Transponder
Operations

The memory of MIFARE Classic transponders is organized in sectors and blocks. In case
of MIFARE Classic 1K, the memory is divided into 16 sectors, each sector holds 4 blocks.
Each block holds 16 bytes of data. Each sector is secured by two keys, Key A and Key
B which are always located in the last block of a sector (sector trailer). In order to access
the respective sector, a login using one of the two keys has to be performed. Once logged
in, the data blocks are accessible for read-, write- or value-operations. Each key may be
equipped with certain access rights, the access rights are coded in byte 6, 7 and 8 of the
sector trailer. Byte 9 is available for data storage.
In case of MIFARE Classic 4K, the memory layout of sector addresses 0 to 31 is compatible
to the 1K version, from sector 32 to 39, each sector holds 16 data blocks.
In any case, block 0 of sector 0 is called manufacturer block, and cannot be overwritten.
Within this block, the UID is stored and some manufacturer specific data.

14.1 Login

In order to do any operation on a sector of a MIFARE Classic transponder, a login to the
respective sector has to be performed. Each sector holds two keys, Key A and Key B. De-
pending on the access conditions of the sector, the appropriate key shall be used for the
desired operation. Both the keys and the access conditions are stored in the sector trailer.

bool MifareClassic_Login
(
const byte* Key,
byte KeyType,
int Sector
);

Page 78 of 196

14 MIFARE Classic Specific Transponder Operations

Parameters:

const byte* Key Pointer to an array of bytes, which has to contain six bytes.
These bytes represent the key for the login process.

byte KeyType Specifies, with which key the operation has to be performed.
This is one of the defined constants KEYA or KEYB.

int Sector Specifies the sector for the login.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Key (hex) Description

FF FF FF FF FF FF Default Transport Key A/B (NXP)

A0 A1 A2 A3 A4 A5 Default Transport Key A (Infineon)

B0 B1 B2 B3 B4 B5 Default Transport Key B (Infineon)

D3 F7 D3 F7 D3 F7 Default key for NDEF-formatted tags

Table 14.1: Well-known keys for MIFARE Classic transponders

14.2 Read/Write Data

14.2.1 Read Data Block

Read 16 bytes of data from a data-block of the transponder. Please note: If a sector trailer
is read, the respective key which was used for login is represented by zeros.

bool MifareClassic_ReadBlock
(
int Block,
byte* Data
);

Page 79 of 196

14 MIFARE Classic Specific Transponder Operations

Parameters:

int Block Specify the address of the block to be read. The valid range
of this parameter is between 0 and 255.

byte* Data This parameter holds the data which was read from the tag if
the operation was successful. Note that this function always
reads 16 bytes of data, so the minimum array size of Data
must be at least 16 bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

14.2.2 Write Data Block

Write 16 bytes of data to a data-block of the transponder. Special care must be taken when
writing to a sector trailer as a faulty setting of the access conditions can make the sector
unaccessible.

bool MifareClassic_WriteBlock
(
int Block,
const byte* Data
);

Parameters:

int Block Specify the address of the block to be written. The valid range
of this parameter is between 0 and 255.

const byte* Data This parameter holds the data which shall be written to the
tag. Note that this function always writes 16 bytes of data, so
the minimum array size of Data shall be at least 16 bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

14.3 Handling of Value Blocks

14.3.1 Read Value Block

Read the value stored in a MIFARE Classic compliant value block.

bool MifareClassic_ReadValueBlock
(

Page 80 of 196

14 MIFARE Classic Specific Transponder Operations

int Block,
int* Value
);

Parameters:

int Block Specify the address of the block to be read. The valid range of
this parameter is between 0 and 255. Note that this function
does not work with sector trailers.

int* Value This parameter holds the value which was read from the tag if
the operation was successful.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Remark: This function checks if the block has a valid value block format. If this is not
the case, the function returns false.

14.3.2 Write Value Block

Format a data block to a MIFARE Classic compliant value block and assign an initial value.

bool MifareClassic_WriteValueBlock
(
int Block,
int Value
);

Parameters:

int Block Specify the address of the block to be formatted. The valid
range of this parameter is between 0 and 255. Note that this
function does not work with sector trailers.

int Value This parameter holds the initial value of the value block.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

14.3.3 Increment Value Block

Credit a value block with a given increment value.

bool MifareClassic_IncrementValueBlock
(
int Block,

Page 81 of 196

14 MIFARE Classic Specific Transponder Operations

int Value
);

Parameters:

int Block Specify the address of the block to be incremented. The valid
range of this parameter is between 0 and 255. Note that this
function does not work with sector trailers.

int Value This parameter holds the increment value.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

14.3.4 Decrement Value Block

Debit a value block with a given decrement value.

bool MifareClassic_DecrementValueBlock
(
int Block,
int Value
);

Parameters:

int Block Specify the address of the block to be decremented. The valid
range of this parameter is between 0 and 255. Note that this
function does not work with sector trailers.

int Value This parameter holds the decrement value.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 82 of 196

14 MIFARE Classic Specific Transponder Operations

Sector 0

Sector 1

Sector 2

Sector 3

Sector 4

Sector 5

Sector 6

Sector 7

Sector 8

Sector 9

Sector 10

Sector 11

Sector 12

Sector 13

Sector 14

Sector 15

Key A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Key B

Block 0

Block 1

Block 2

Block 3 Access Rights

Figure 14.1: Memory layout of a MIFARE Classic 1K transponder

Page 83 of 196

15 MIFARE Ultralight/Ultralight C Specific Transponder Operations

15 MIFARE Ultralight/Ultralight C Specific
Transponder Operations

15.1 Login (Ultralight C only)

Depending on the security settings of the transponder, a login with the valid transponder key
might be necessary prior performing any further operation.

bool MifareUltralightC_Authenticate
(
const byte* Key
);

Parameters:

const byte* Key Pointer to an array of bytes, which has to contain 16 bytes.
These bytes represent the key for the authentication process.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Key (hex) Description

49 45 4D 4B 41 45 52 42
21 4E 41 43 55 4F 59 46

Default Transport Key

Table 15.1: Well-known key for MIFARE Ultralight C transponders

Page 84 of 196

15 MIFARE Ultralight/Ultralight C Specific Transponder Operations

15.2 Read/Write Data

15.2.1 Read Page

Though the page size of this transponder family is 4 bytes, the transponder always returns
16 bytes of data. This is achieved by reading four consecutive data pages, e.g. if page 4
is to be read, the transponder also returns the content of page 5, 6 and 7. The transponder
incorporates an integrated roll-back mechanism if reading is done beyond the last physical
available page address. E.g., in case of reading page 14 of MIFARE Ultralight this would
result in reading page 14, 15, 0, 1.

bool MifareUltralight_ReadPage
(
int Page,
byte* Data
);

Parameters:

int Page Specify the address of the page to be read. The valid range
of this parameter is between 0 and 15 (Ultralight) or 0 and 43
(Ultralight C).

byte* Data This parameter holds the data which was read from the tag if
the operation was successful. Note that this function always
reads 16 bytes of data, so the minimum array size of Data
must be at least 16 bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

15.2.2 Write Page

Write 4 bytes of data to a data-page of the transponder. Compared to the read-function, this
function processes only one page at once.

bool MifareUltralight_WritePage
(
int Page,
const byte* Data
);

Page 85 of 196

15 MIFARE Ultralight/Ultralight C Specific Transponder Operations

Parameters:

int Page Specify the address of the page to be written. The valid range
of this parameter is between 2 and 15 (Ultralight) or 2 and 47
(Ultralight C).

const byte* Data This parameter holds the data which shall be written to the
tag. Note that this function always writes 4 bytes of data, so
the minimum array size of Data must be at least 4 bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 86 of 196

16 DESFire Specific Transponder Operations

16 DESFire Specific Transponder
Operations

The memory of a DESFire transponder is organized as a flexible file system. The transpon-
der can hold up to 28 applications and each application may contain up to 32 files of different
type and size. Each application can be secured by up to 14 cryptographic keys which are
stored in the applications’s internal key file. Applications are identified by a number, which
must be unambiguous on the transponder. The same rule applies to files within applications,
these are identified by numbers which must be unambiguous within the application.
By default, there exists a root-application with the identifier 0x000000 which defines the so-
called transponder level. This application cannot hold any files, it is intended to be used for
basic administration of the transponder. A simple use-case could be: Search for a transpon-

Card

Application 1

Application 2

Application 3

Key File

Data File 1

Data File 2

Data File 3

Figure 16.1: DESFire memory layout

der, select the desired application, perform an authentication with the respective key (if
required), access data file for read or write operation.

Page 87 of 196

16 DESFire Specific Transponder Operations

Search

Transponder

Select Application

Authentication

necessary ?

Authenticate

Yes

Read/Write Data

No

Figure 16.2: Simple way to gain access to the file system

16.1 Security Related Operations

16.1.1 Authenticate

This function shall be used to perform a mutual three pass authentication between reader
and transponder. The function supports both 3DES, 3K3DES and AES cryptography. In or-
der to support both the DESFire EV1 transponder family and the older DESFire MF3ICD40,
the function incorporates a so-called Compatible Mode.
After successful authentication, a session-key is generated which is used for all further cryp-

Page 88 of 196

16 DESFire Specific Transponder Operations

tographic operations. The authenticated state is invalidated in case of selecting an applica-
tion, changing the key which was used for the current authentication or a failed authentica-
tion.

On transponder level, depending on the security configuration, an authentication with the
transponder master key may be required to perform specific operations:

• Gather information on the transponder

• Change the transponder master key

• Change the transponder master key settings

• Create/delete applications

On application level, depending on the configuration, an authentication may be required to
perform specific operations:

• Gather information about the application

• Change the keys of the application

• Create/delete files within the application

• Change access rights

• Access data files

bool DESFire_Authenticate
(
int CryptoEnv,
int KeyNoTag,
const byte* Key,
int KeyByteCount,
int KeyType,
int Mode
);

Page 89 of 196

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. All consecutive operations with the
transponder shall be done using the specified environment.

int KeyNoTag Specify the key number that shall be used for authentication.
On transponder level, only key 0 is valid for authentication. On
application level, one can specify up to 14 keys which can be
used for authentication. Both on transponder and application
level, key 0 identifies the respective master key.

const byte* Key Specify the key that shall be used for authentication. For
3DES/AES, the key must have a key length of 16 bytes, for
3K3DES the key must have a key length of 24 bytes.

int KeyByteCount Specify the key length of the key. Use one of the prede-
fined constants DESF_KEYLEN_3DES, DESF_KEYLEN_3K3DES or
DESF_KEYLEN_AES.

int KeyType Specify the type of the specified key. Use one of the prede-
fined constants DESF_KEYTYPE_3DES, DESF_KEYTYPE_3K3DES or
DESF_KEYTYPE_AES. The authentication will be performed ac-
cording to the specified key type.

int Mode Select either DESFire EV1 ISO-mode authentication or the
compatible native DESFire authentication scheme. Use one
of the predefined constants DESF_AUTHMODE_COMPATIBLE or
DESF_AUTHMODE_EV1. Note that 3K3DES or AES cryptography
cannot be used in compatible mode.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Remark: By default, the initial value of any key is all zeros. E.g. after creation of an
application, all keys have this initial value.

Example:

// Perform AES-authentication using key 0

const byte Key[16] =
{

0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF

};

if (DESFire_Authenticate(
CRYPTO_ENV0,
0,

Page 90 of 196

16 DESFire Specific Transponder Operations

Key,
DESF_KEYLEN_AES,
DESF_KEYTYPE_AES,
DESF_AUTHMODE_EV1))

{
DoSomething();

}

16.1.2 Get Key Version

This function can be used to read the current key version of any key that is stored on the
transponder. If the selected application is 0x000000, the command applies to the transpon-
der master key and therefore only key number 0 is valid for querying the key version.

bool DESFire_GetKeyVersion
(
int CryptoEnv,
int KeyNo,
byte* KeyVer
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int KeyNoTag Specify the key number that shall be queried.

byte* KeyVer The key version information is returned as one byte by this
parameter.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Example:

// Query key version of key 0
byte KeyVer;

if (DESFire_GetKeyVersion(CRYPTO_ENV0,0,&KeyVer))
{

DoSomething();
}

Page 91 of 196

16 DESFire Specific Transponder Operations

16.1.3 Get Key Settings

This function allows to get information on the transponder- or application key settings. De-
pending on the key settings, a preceding authentication with the respective master key may
be required.

bool DESFire_GetKeySettings
(
int CryptoEnv,
TDESFireMasterKeySettings* MasterKeySettings
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

TDESFireMasterKey
Settings*
MasterKeySettings

This structure receives the queried master key settings.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Example:

Members Length
(Bits)

Description

TDESFireKeySettings
KeySettings

8 This member holds the settings of the master
key.

int NumberOfKeys 32 This member holds the number of available
keys. The valid range is 0 to 14.

int KeyType 32 This member holds the type of keys. Possi-
ble value is one of the predefined constants
DESF_KEYTYPE_3DES, DESF_KEYTYPE_3K3DES or
DESF_KEYTYPE_AES.

Table 16.1: Definition of TDESFireMasterKeySettings

// Query key settings of application 0x123456

TDESFireMasterKeySettings MasterKeySettings;

Page 92 of 196

16 DESFire Specific Transponder Operations

Members Length
(Bits)

Description

byte AllowChangeMasterKey 1 If set to 1 the master key is changeable, oth-
erwise it cannot be changed any more.

byte FreeDirectoryList 1 If set to 1 no preceding authentication with the
master key is required to perform the opera-
tions GetFileIDs, GetFileSettings, GetKeySet-
tings (application level) or GetApplicationIDs,
GetKeySettings (transponder level). If set to
0, an authentication with the master key is re-
quired.

byte FreeCreateDelete 1 If set to 1 no preceding authentication with
the master key is required to perform the
operations CreateFile/DeleteFile (application
level) or CreateApplication/DeleteApplication
(transponder level). If set to 0, an authenti-
cation with the master key is required.

byte ConfigurationChangeable 1 If set to 1 the configuration is changeable if au-
thenticated with the master key. If set to 0, the
configuration cannot be changed any more.

byte ChangeKeyAccessRights 4 This member holds the access rights for
changing keys. On transponder level this
member is set to 0.

0x0: Authentication with the master key is nec-
essary to change any key.

0x1...0xD: Authentication with the specified
key is necessary to change any key. The
specified key and the master key can only be
changed after authentication with the master
key.

0xE: Authentication with the key to be
changed is necessary to change the key.

0xF: All keys except the master key are frozen.

Table 16.2: Definition of TDESFireKeySettings

if (DESFire_SelectApplication(0x123456))
{

if (DESFire_GetKeySettings(CRYPTO_ENV0,&MasterKeySettings))
{

Page 93 of 196

16 DESFire Specific Transponder Operations

DoSomething(MasterKeySettings);
}

}

16.1.4 Change Key Settings

This function allows to change the transponder- or application master key settings. The re-
spective master key settings can only be changed, if the bit ConfigurationChangeable of the
current key settings was not cleared before. In order to change the key settings, a preceding
authentication with the respective master key is required in general.

bool DESFire_ChangeKeySettings
(
int CryptoEnv,
const TDESFireMasterKeySettings* MasterKeySettings
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

const TDESFireMasterKey
Settings*
MasterKeySettings

This structure holds the new master key settings. See chapter
Get Key Settings for details.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

16.1.5 Change Key

This function allows to change a key. The respective key settings define (see chapter Get
Key Settings) whether changing of a key is permitted or not and which key must be used for
authentication before calling this function.

bool DESFire_ChangeKey
(
int CryptoEnv,
int KeyNo,
const byte* OldKey,
int OldKeyByteCount,
const byte* NewKey,

Page 94 of 196

16 DESFire Specific Transponder Operations

int NewKeyByteCount,
byte KeyVersion,
const TDESFireMasterKeySettings* MasterKeySettings
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int KeyNoTag Specify the key number that shall be changed.

const byte* OldKey Specify the old key.

int OldKeyByteCount Specify the length of the old key in bytes.

const byte* NewKey Specify the new key.

int NewKeyByteCount Specify the length of the new key in bytes.

byte KeyVersion Specify the key version of the new key.

const TDESFireMasterKey
Settings*
MasterKeySettings

This structure holds the current master key settings. See
chapter Get Key Settings for details.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Example:

// Change key 1 of application 0x123456

const byte oldKey[16] =
{

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

};
const byte newKey[16] =
{

0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF

};
TDESFireMasterKeySettings MasterKeySettings;

if (!DESFire_SelectApplication(0x123456))
{

return; // Error selecting application
}
if (!DESFire_GetKeySettings(CRYPTO_ENV0, &MasterKeySettings))
{

Page 95 of 196

16 DESFire Specific Transponder Operations

return; // Error gathering key settings
}
if (MasterKeySettings.KeySettings.ChangeKeyAccessRights == 0)
{

// Authenticate with master key
if (!DESFire_Authenticate(

CRYPTO_ENV0,
0,
oldKey,
DESF_KEYLEN_AES,
DESF_AUTHMODE_EV1))

{
return; // Authentication error

}
if (!DESFire_ChangeKey(

CRYPTO_ENV0,
1,
oldKey,
newKey,
DESF_KEYLEN_AES,
0x20,
&MasterKeySettings))

{
return; // Error changing key 1

}
}

16.2 Transponder Related Operations

16.2.1 Create Application

This function allows to create a new application on the transponder. Depending on the se-
curity settings of the transponder, a preceding authentication with the transponder master
key may be required, see chapter Get Key Settings for details.

bool DESFire_CreateApplication
(
int CryptoEnv,
int AID,
const TDESFireMasterKeySettings* MasterKeySettings
);

Page 96 of 196

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int AID Specify the Application ID of the new application to be cre-
ated. The AID consists of 24 bit, its value must be unique on
the transponder. The value 0x000000 is reserved for the root
application.

const TDESFireMasterKey
Settings*
MasterKeySettings

This structure holds the master key settings of the new appli-
cation. See chapter Get Key Settings for details.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Example:

// Create application 0x123456

TDESFireMasterKeySettings MasterKeySettings;

MasterKeySettings.KeySettings.AllowChangeMasterKey = true;
MasterKeySettings.KeySettings.FreeDirectoryList = true;
MasterKeySettings.KeySettings.FreeCreateDelete = true;
MasterKeySettings.KeySettings.ConfigurationChangeable = true;
MasterKeySettings.KeySettings.ChangeKeyAccessRights = 0x0;
MasterKeySettings.NumberOfKeys = 2;
MasterKeySettings.KeyType = DESF_KEYTYPE_AES;

if (DESFire_CreateApplication(
CRYPTO_ENV0,
0x123456,
&MasterKeySettings))

{
DoSomething();

}

16.2.2 Delete Application

This function allows to delete an existing application on the transponder. Depending on the
security settings of the transponder, a preceding authentication with the transponder master
key may be required, see chapter Get Key Settings for details.

bool DESFire_DeleteApplication

Page 97 of 196

16 DESFire Specific Transponder Operations

(
int CryptoEnv,
int AID
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int AID Specify the Application ID of the application that shall be
deleted. The AID consists of 24 bit. The value 0x000000
is reserved for the root application hence this AID cannot be
deleted.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

16.2.3 Get Application IDs

This function allows to list all application IDs that exist on the transponder. Depending on the
security settings of the transponder, a preceding authentication with the transponder master
key may be required, see chapter Get Key Settings for details.

bool DESFire_GetApplicationIDs
(
int CryptoEnv,
int* AIDs,
int* NumberOfAIDs,
int MaxAIDCnt
);

Page 98 of 196

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int* AIDs After successful completion of this function, this parameter
holds a list of the retrieved application IDs.

int* NumberOfAIDs This parameter holds the number of retrieved application IDs.

int MaxAIDCnt Specify the maximum number of application IDs, that can be
stored in the array AIDs. Note: Up to 28 applications can
be stored on a DESFire transponder, so take care for proper
dimensioning of the array AIDs.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Example:

// List applications stored on the transponder

int AIDList[28];
int NumberOfAIDs;

if (DESFire_GetApplicationIDs(
CRYPTO_ENV0,
AIDList,
&NumberOfAIDs,
sizeof(AIDList)/sizeof(int)))

{
DoSomething(AIDList,NumberOfAIDs);

}

16.2.4 Select Application

This function is used to select an application in order to perform further operations such as
reading or writing. Depending on the security settings of the selected application, an au-
thentication with one of the application’s keys may be required after selection.

bool DESFire_SelectApplication
(
int CryptoEnv,
int AID
);

Page 99 of 196

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int AID This parameter holds the application ID of the application to
be selected.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

16.2.5 Format Transponder

Calling this function results in formatting the transponder. This means, all applications in-
cluding their files and keys are destroyed and the occupied memory space is released for
future use. For proper usage, a preceding authentication with the transponder master key is
required.

bool DESFire_FormatTag
(
int CryptoEnv
);

16.2.6 Get Transponder Information

This function can be used to gather detailed information about the DESFire transponder re-
garding hardware and software version.

bool DESFire_GetVersion
(
int CryptoEnv,
TDESFireVersion* Version
);

Page 100 of 196

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

TDESFireVersion*
Version

This structure receives the queried manufacturing related in-
formation.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Members Length
(Bits)

Description

TDESFireTagInfo HWInfo 80 This member holds the hardware related ver-
sion information.

TDESFireTagInfo SWInfo 80 This member holds the software related ver-
sion information.

TDESFireProdInfo ProdInfo 112 This member holds manufacturing specific in-
formation.

Table 16.3: Definition of TDESFireVersion

Members Length
(Bits)

Description

byte VendorID 8 Codes the vendor ID (0x04 stands for NXP).

byte Type 8 Codes the type (here 0x01).

byte SubType 8 Codes the subtype(here 0x01).

byte VersionMajor 8 Codes the major version number.

byte VersionMinor 8 Codes the minor version number.

uint32_t StorageSize 32 Size of EEPROM in bytes.

byte CommunicationProtocol 8 Codes the communication protocol type (here
0x05 means ISO14443-3 and -4).

Table 16.4: Definition of TDESFireTagInfo

Page 101 of 196

16 DESFire Specific Transponder Operations

Members Length
(Bits)

Description

byte UID[7] 56 This member holds the unique serial number.
If the transponder is configured to Random ID,
the UID is set to 0x00.

byte ProdBatchNumber[5] 40 Codes the production batch number.

byte
CalendarWeekOfProduction

8 Codes the calendar week of production.

byte YearOfProduction 8 Codes the year of production.

Table 16.5: Definition of TDESFireProdInfo

16.2.7 Get Available Memory Space

This function allows to gather the available memory space of the transponder. A preceding
authentication is not required.

bool DESFire_FreeMem
(
int CryptoEnv,
int* FreeMemory
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int* FreeMemory After successful completion of this function, the available
memory size in bytes is returned by this parameter.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

16.2.8 Get Card UID

This function allows to retrieve the card UID in case of random ID. A preceding authentica-
tion with any key is required prior calling this function.

bool DESFire_GetUID
(

Page 102 of 196

16 DESFire Specific Transponder Operations

int CryptoEnv,
byte* UID,
int* Length,
int BufferSize
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

byte* UID After successful completion of this function, the real card UID
is returned by this parameter. Note: The UID usually occupies
7 bytes, so take care for proper dimensioning of the array UID.

int* Length The length in bytes of the UID is returned by this parameter.

int BufferSize This parameter specifies the size of the array UID in bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

16.2.9 Set Transponder Configuration

16.2.9.1 Disable Format Tag

When this function is called, formatting the transponder is not possible any more (see chap-
ter Format Transponder). A preceding authentication with the transponder master key is
required prior calling this function. Note: Disabling tag formatting cannot be reset any more.

bool DESFire_DisableFormatTag
(
int CryptoEnv
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 103 of 196

16 DESFire Specific Transponder Operations

16.2.9.2 Enable Random ID

When this function is called, the transponder is turned into Random ID mode, this means the
real UID can only be retrieved by authenticating to the transponder and calling the function
Get Card UID. A preceding authentication with the transponder master key is required prior
calling this function. Note: Setting the transponder to Random ID mode cannot be reset any
more.

bool DESFire_EnableRandomID
(
int CryptoEnv
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

16.2.9.3 Set Default Key

This function can be used to specify the default key, which is applied when e.g. a new ap-
plication is created on the transponder. By default, keys are initialized to 0x00. A preceding
authentication with the transponder master key is required prior calling this function.

bool DESFire_SetDefaultKey
(
int CryptoEnv,
const byte* Key,
int KeyByteCount,
byte KeyVersion
);

Page 104 of 196

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

const byte* Key This parameter specifies the new default key.

int KeyByteCount This parameter specifies the length of the new default
key in bytes. Use one of the predefined constants
DESF_KEYLEN_3DES, DESF_KEYLEN_3K3DES or DESF_KEYLEN_AES.

byte KeyVersion This parameter specifies the default key version.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

16.2.9.4 Set User-defined Answer To Select (ATS)

This function can be used to specify a user-defined Answer To Select (ATS) which is re-
turned by the transponder after RATS. Changing the ATS to a non-default value shall only
be carried out by experts as a ATS longer than 16 bytes could cause problems with readers
that support only frame sizes of max. 16 bytes. The ATS must be formatted as follows: TL
T0 TA TB TC + Historical bytes. The default ATS of DESFire EV1 is TL=0x06, T0=0x75,
TA=0x77, TB=0x81, TC=0x02, Historical Bytes=0x80.

bool DESFire_SetDefaultKey
(
int CryptoEnv,
const byte* ATS,
int Length
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

const byte* ATS This parameter specifies the new ATS.

int Length This parameter specifies the length of the new ATS in bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 105 of 196

16 DESFire Specific Transponder Operations

16.3 Application Related Operations

This section deals with file handling within an application of a DESFire transponder. An
application can hold three different basic file types: Data files, Value files and Record Files.
Data files are available either with or without integrated backup-mechanism, Value files and
Record files always incorporate integrated backup. There exist two types of record files:
Linear record files and Cyclic Record Files.
Some functions for file handling are using the data structure TDESFireFileSettings which
defines all relevant file settings. See the following tables for reference:

Members Length
(Bits)

Description

byte FileType 8 This member defines the file type. Possible
values are: DESF_FILETYPE_STDDATAFILE,
DESF_FILETYPE_BACKUPDATAFILE,
DESF_FILETYPE_VALUEFILE,
DESF_FILETYPE_LINEARRECORDFILE,
DESF_FILETYPE_CYCLICRECORDFILE.

byte CommSet 8 This member defines the communication
settings between reader and transpon-
der when the file is accessed. Pos-
sible values are: DESF_COMMSET_PLAIN,
DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC

uint16_t AccessRights 16 This member holds the access rights.

union
TDESFireSpecificFileInfo
SpecificFileInfo

32 to
128

This member holds file type specific informa-
tion.

Table 16.6: Definition of TDESFireFileSettings

Coding of access rights:
Every file holds four different access rights, each access right is coded in one nibble. These
four nibbles are concatenated and form the 16 bit variable AccessRights.

15...12 11...8 7...4 3...0

Read Access Write Access Read/Write Access Change Access
Rights

Table 16.7: Coding of AccessRights

Page 106 of 196

16 DESFire Specific Transponder Operations

One nibble codes 16 possible values. If it codes a number between 0 and 13, this references
a certain key number within the application.
If the number is 14, this means "free" access so there is no authentication necessary to
perform the respective operation on the file. In case of coding the number 15, this means
"deny" access.

Members Length
(Bits)

Description

struct
TDESFireDataFileSettings
DataFileSettings

32 Definition of data file settings.

struct
TDESFireValueFileSettings
ValueFileSettings

128 Definition of value file settings.

struct
TDESFireRecordFileSettings
RecordFileSettings

96 Definition of record file settings.

Table 16.8: Definition of union TDESFireSpecificFileInfo

Members Length
(Bits)

Description

uint32_t FileSize 32 Definition of the data file size.

Table 16.9: Definition of struct TDESFireDataFileSettings

Members Length
(Bits)

Description

uint32_t LowerLimit 32 Definition of the lower limit which must not be
passed by a debit operation.

uint32_t UpperLimit 32 Definition of the upper limit which must not be
passed by a credit operation.

uint32_t LimitedCreditValue 32 Definition of the initial value of the file at file
creation.

bool LimitedCreditEnabled 32 LimitedCredit feature enabled or disabled.

Table 16.10: Definition of struct TDESFireValueFileSettings

Page 107 of 196

16 DESFire Specific Transponder Operations

Members Length
(Bits)

Description

uint32_t RecordSize 32 Definition of the size of one single record in
bytes.

uint32_t MaxNumberOfRecords 32 Definition of the maximum number of records.

uint32_t
CurrentNumberOfRecords

32 Definition of the current number of records.
This member is ignored at file creation.

Table 16.11: Definition of struct TDESFireRecordFileSettings

16.3.1 Create File

This section deals with the creation of new files within applications. Depending on the spec-
ified file type, the file is either created with or without integrated backup-mechanism. Each
file requires an unambiguous identifier which is coded in one byte in the range from 0x00
to 0x1F. During creation of the file, the level of security is defined in the communication
settings. Communication can be either plain, secured by MAC or fully enciphered. Further-
more, the access rights are assigned to certain keys held by the application.
Depending on the security settings of the application, a preceding authentication with the
application master key may be required, see chapter Get Key Settings for details.

bool DESFire_CreateDataFile
(
int CryptoEnv,
int FileNo,
const TDESFireFileSettings* FileSettings
);

bool DESFire_CreateValueFile
(
int CryptoEnv,
int FileNo,
const TDESFireFileSettings* FileSettings
);

Page 108 of 196

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the file ID. If the ID already exists within the applica-
tion, this results in an error.

const
TDESFireFileSettings*
FileSettings

This member holds the file settings. See description of
TDESFireFileSettings for details.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Example:

// Create new standard data file (without backup)
// in application 0x123456

TDESFireFileSettings FileSettings;
int FileID;

if (DESFire_SelectApplication(0x123456))
{

// We create a standard data file
FileSettings.FileType = DESF_FILETYPE_STDDATAFILE;
// Communication between reader and tag is fully enciphered
FileSettings.CommSet = DESF_COMMSET_FULLY_ENC;
// Read Access : Key 1
// Write Access : Key 2
// Read/Write : Key 3
// Change Settings : Key 4
FileSettings.AccessRights = 0x1234;
// File size shall be 512 bytes
FileSettings.SpecificFileInfo.DataFileSettings.FileSize = 512;
// Assign an identifier to the file
FileID = 0x12;
if (DESFire_CreateDataFile(CRYPTO_ENV0, FileID, &FileSettings))
{

DoSomething();
}

}

Page 109 of 196

16 DESFire Specific Transponder Operations

16.3.2 Delete File

This function allows to permanently deactivate a file within an application. This means, the
allocated memory is not released for further usage, only the file number can be re-used for
creating a new file. In order to re-use the memory of deleted files, this requires formatting
the transponder but this leads to permanent loss of any application data. Depending on the
security settings of the application, a preceding authentication with the application master
key may be required, see chapter Get Key Settings for details.

bool DESFire_DeleteFile
(
int CryptoEnv,
int FileNo
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the ID of the file which shall be deleted. If the ID
doesn’t exist within the application, this results in an error.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

16.3.3 Get File IDs

This function allows to list all file IDs that exist within the currently selected application. Each
file ID is coded in one byte in the range from 0x00 to 0x1F. Duplicate values are not possible
as each file must have an unambiguous identifier. Depending on the security settings of the
application, a preceding authentication with the application master key may be required, see
chapter Get Key Settings for details.

bool DESFire_GetFileIDs
(
int CryptoEnv,
byte* FileIDList,
int* FileIDCount,
int MaxFileIDCount
);

Page 110 of 196

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

byte* FileIDList After successful completion of this function, this parameter
holds a list of the retrieved file IDs.

int* FileIDCount This parameter holds the number of retrieved file IDs.

int MaxFileIDCount Specify the maximum number of file IDs, that can be stored
in the array FileIDList. Note: Up to 32 files can be stored
within an application, so take care for proper dimensioning of
the array FileIDList.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Example:
See chapter Get File Settings for a comprehensive example.

16.3.4 Get File Settings

This function allows to query the file settings of an existing file within an application. The
returned information depends on the type of the file. Depending on the security settings of
the application, a preceding authentication with the application master key may be required,
see chapter Get Key Settings for details.

bool DESFire_GetFileSettings
(
int CryptoEnv,
int FileNo,
TDESFireFileSettings* FileSettings
);

Page 111 of 196

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the file ID which shall be queried.

TDESFireFileSettings*
FileSettings

This member holds the returned file settings. See description
of TDESFireFileSettings for details.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Example:

// Query file settings of all files in application 0x123456

TDESFireFileSettings FileSettings;

// An application can hold up to 32 files
byte FileIDList[32];
int FileIDCount;

int i;

if (DESFire_SelectApplication(0x123456))
{

// Gather a list of present file IDs
if (DESFire_GetFileIDs(

CRYPTO_ENV0,
FileIDList,
&FileIDCount,
sizeof(FileIDList)))

{
for (i=0; i<FileIDCount; i++)
{

// Query the settings of each file
if (DESFire_GetFileSettings(

CRYPTO_ENV0,
FileIDList[i],
&FileSettings))

{
switch(FileSettings.FileType)
{
case DESF_FILETYPE_STDDATAFILE:

DoSomething();
break;

case DESF_FILETYPE_VALUEFILE:
DoSomethingElse();

Page 112 of 196

16 DESFire Specific Transponder Operations

break;
}

}
}

}
}

16.3.5 Change File Settings

This function allows to change the access parameters such as communication settings and
access rights of an existing file. Depending on the actual change access rights of the file,
authentication with the respective key has to be performed before calling this function. Fur-
thermore, the change access right must be different from "deny". See Coding of Access
Rights for details.

bool DESFire_ChangeFileSettings
(
int CryptoEnv,
int FileNo,
int NewCommSet,
int OldAccessRights,
int NewAccessRights
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the file ID whose settings shall be changed.

int NewCommSet Specify the new communication settings. Possible val-
ues are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

int OldAccessRights Specify the current Access Rights of the file.

int NewAccessRights Specify the new Access Rights of the file.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 113 of 196

16 DESFire Specific Transponder Operations

16.4 File Related Operations

16.4.1 Data Files

16.4.1.1 Read Data

This function shall be used to access a standard or backup data file in order to read from it.
Depending on the file’s access rights, a preceding authentication with the read or read/write
key has to be done, see Coding of Access Rights for details. The function allows segmented
access, this means the user is able to either read the entire file or only a part starting at a
user-defined offset.

bool DESFire_ReadData
(
int CryptoEnv,
int FileNo,
byte* Data,
int Offset,
int Length,
int CommSet
);

Page 114 of 196

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the ID of the file that shall be read.

byte* Data After successful completion of this function, the buffer referred
by this parameter holds the data which was read from the
transponder. Take care for adequate dimensioning.

int Offset Specify the starting address for reading. The valid range of
this parameter is 0x000000 to FileSize - 1. In case of address-
range violation, the function returns with an error.

int Length Specify the length of data that shall be read. The valid range
of this parameter is FileSize - Offset. In case of address-range
violation, the function returns with an error.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possible val-
ues are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Example:

// Read data file 0x12 which is located in application 0x123456

TDESFireFileSettings FileSettings;

int ReadAccess;

// This is the buffer that receives the data to be read
byte Data[512];

// If an authentication is necessary, we assume this would be
// the key that gives read access
const byte KeyRead[16] =
{

0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF

};

if (!DESFire_SelectApplication(CRYPTO_ENV0, 0x123456))
return; // Error

Page 115 of 196

16 DESFire Specific Transponder Operations

// Gather file settings
if (!DESFire_GetFileSettings(CRYPTO_ENV0, 0x12, &FileSettings))

return; // Error

// Read access rights are located in the highest nibble of
// FileSettings.AccessRights
ReadAccess = (FileSettings.AccessRights >> 12) & 0x000F;

switch (ReadAccess)
{
case 15: // Access denied

return;
case 14: // Free access

break;
default:

// Authenticate with the "reading-key"
if (!DESFire_Authenticate(

CRYPTO_ENV0,
ReadAccess,
KeyRead,
DESF_KEYLEN_AES,
DESF_KEYTYPE_AES,
DESF_AUTHMODE_EV1))
return; // Error

}

// Check size of reading buffer
if (FileSettings.SpecificFileInfo.DataFileSettings.FileSize >

sizeof(Data))
return; // Buffer size not enough

// Read entire data file
if (DESFire_ReadData(

CRYPTO_ENV0,
0x12,
Data,
0,
FileSettings.SpecificFileInfo.DataFileSettings.FileSize,
FileSettings.CommSet))

{
DoSomething();

}

16.4.1.2 Write Data

This function shall be used to access a standard or backup data file in order to write to it.
Depending on the file’s access rights, a preceding authentication with the write or read/write

Page 116 of 196

16 DESFire Specific Transponder Operations

key has to be done, see Coding of Access Rights for details. The function allows segmented
access, this means the user is able to either rewrite the entire file or only a part starting at a
user-defined offset.

bool DESFire_WriteData
(
int CryptoEnv,
int FileNo,
const byte* Data,
int Offset,
int Length,
int CommSet
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the ID of the file that shall be written.

const byte* Data The buffer referred by this parameter holds the data which is
written to the file.

int Offset Specify the starting address for writing. The valid range of this
parameter is 0x000000 to FileSize - 1. In case of address-
range violation, the function returns with an error.

int Length Specify the length of data that shall be written. The valid range
of this parameter is FileSize - Offset. In case of address-range
violation, the function returns with an error.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possible val-
ues are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Remark: If data is written to a Backup Data File, it is necessary to validate the written
data with the function Commit Transaction. Calling the function Abort Trans-
action will invalidate all changes.

Example:

// Write to data file 0x12 which is located in application 0x123456

TDESFireFileSettings FileSettings;

Page 117 of 196

16 DESFire Specific Transponder Operations

int WriteAccess;

// This is the buffer that holds the data to be written
const byte Data[] =
{

0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08
};

// If an authentication is necessary, we assume this would be
// the key that gives write access
const byte KeyWrite[16] =
{

0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF

};

if (!DESFire_SelectApplication(CRYPTO_ENV0, 0x123456))
return; // Error

// Gather file settings
if (!DESFire_GetFileSettings(CRYPTO_ENV0, 0x12, &FileSettings))

return; // Error

// Write access rights are located in bits 11...8 of
// FileSettings.AccessRights
WriteAccess = (FileSettings.AccessRights >> 8) & 0x000F;

switch (WriteAccess)
{
case 15: // Access denied

return;
case 14: // Free access

break;
default:

// Authenticate with the "writing-key"
if (!DESFire_Authenticate(

CRYPTO_ENV0,
WriteAccess,
KeyWrite,
DESF_KEYLEN_AES,
DESF_KEYTYPE_AES,
DESF_AUTHMODE_EV1))
return; // Error

}

// Check size of file
if (FileSettings.SpecificFileInfo.DataFileSettings.FileSize <

sizeof(Data))

Page 118 of 196

16 DESFire Specific Transponder Operations

return; // File size not enough

// Write to data file
if (DESFire_WriteData(

CRYPTO_ENV0,
0x12,
Data,
0,
sizeof(Data),
FileSettings.CommSet))

{
DoSomething();

}

16.4.2 Value Files

16.4.2.1 Get Value

This function allows to read the current value from a Value File. Depending on the file’s
access rights, a preceding authentication with the read, write or read/write key has to be
done, see Coding of Access Rights for details.

bool DESFire_GetValue
(
int CryptoEnv,
int FileNo,
int* Value,
int CommSet
);

Page 119 of 196

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the ID of the Value File whose value shall be queried.

int* Value After successful completion of this function, this parameter
holds the value which was read from the file.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possible val-
ues are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

16.4.2.2 Debit

This function allows to decrease a value stored in a Value File. The function requires a pre-
ceding authentication with the read, write or read/write key, see Coding of Access Rights for
details. The value modifications of Credit , Debit and Limited Credit functions are cumulated
until the function Commit Transaction is called.
If the Limited Credit feature is enabled, the new limit for a subsequent Limited Credit func-
tion call is set to the sum of Debit modifications within one transaction before calling Commit
Transaction. This assures, that a Limited Credit can not re-book more values than a debiting
transaction deducted before.

bool DESFire_Debit
(
int CryptoEnv,
int FileNo,
const int Value,
int CommSet
);

Page 120 of 196

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the ID of the Value File that shall be debited.

const int Value The value stored in the value file will be decreased by this
parameter.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possible val-
ues are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Remark: After modifying value files, it is necessary to validate the transaction with the
function Commit Transaction. Calling the function Abort Transaction will inval-
idate all changes.

16.4.2.3 Credit

This function allows to increase a value stored in a Value File. The function requires a pre-
ceding authentication with the read/write key, see Coding of Access Rights for details. The
value modifications of Credit , Debit and Limited Credit functions are cumulated until the
function Commit Transaction is called.
If the Limited Credit feature is enabled, this function cannot be used. Use the function Lim-
ited Credit instead.

bool DESFire_Credit
(
int CryptoEnv,
int FileNo,
const int Value,
int CommSet
);

Page 121 of 196

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the ID of the Value File that shall be credited.

const int Value The value stored in the value file will be increased by this
parameter.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possible val-
ues are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Remark: After modifying value files, it is necessary to validate the transaction with the
function Commit Transaction. Calling the function Abort Transaction will inval-
idate all changes.

16.4.2.4 Limited Credit

This function allows a limited increase of a value stored in a Value File without having full
read/write permissions to the file. This feature can only be used if it has been enabled dur-
ing file creation. The function requires a preceding authentication with the write or read/write
key, see Coding of Access Rights for details. The value modifications of Credit , Debit and
Limited Credit functions are cumulated until the function Commit Transaction is called.
After calling this function, the new limit is set to 0, regardless of the amount which has been
re-booked. Hence, this function can only be used once after a Debit transaction.

bool DESFire_LimitedCredit
(
int CryptoEnv,
int FileNo,
const int Value,
int CommSet
);

Page 122 of 196

16 DESFire Specific Transponder Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

int FileNo Specify the ID of the Value File that shall be credited.

const int Value The value stored in the value file will be increased by this
parameter. It is limited to the sum of Debit operations on this
value file within the most recent transaction containing at least
one Debit.

int CommSet Specify the communication settings. The communication set-
tings must match to the actual settings of the file. Possible val-
ues are: DESF_COMMSET_PLAIN, DESF_COMMSET_PLAIN_MACED,
DESF_COMMSET_FULLY_ENC.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Remark: After modifying value files, it is necessary to validate the transaction with the
function Commit Transaction. Calling the function Abort Transaction will inval-
idate all changes.

16.4.3 Commit Transaction

This function allows to validate all previous modifications on files with integrated backup
mechanism such as Backup Data Files, Value Files and Record Files. When a transac-
tion has been finished, this is usually the last called function; if this step was omitted, any
changes would be lost if a different application is selected or the transponder is removed
from the RF-field.

bool DESFire_CommitTransaction
(
int CryptoEnv
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 123 of 196

16 DESFire Specific Transponder Operations

16.4.4 Abort Transaction

This function allows to discard all previous modifications on files with integrated backup
mechanism such as Backup Data Files, Value Files and Record Files.

bool DESFire_AbortTransaction
(
int CryptoEnv
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants. Usually the same environment is spec-
ified that was used for authentication.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 124 of 196

17 ISO15693 Specific Transponder Operations

17 ISO15693 Specific Transponder
Operations

17.1 Generic ISO15693 Command

This function can be used for ISO15693 specific transponder operations which are not cov-
ered by high-level system functions.

bool ISO15693_GenericCommand
(
byte Flags,
byte Command,
byte* Data,
int* Length,
int BufferSize
);

Parameters:

byte Flags Specify the ISO15693 flags. Note: The flags regarding RF-
communication are set automatically, so by default one may
assign 0x00 to this parameter.

byte Command Command code.

byte* Data This parameter works as Input/Output-buffer. All additional
parameters which are sent to the transponder are passed
within this buffer. This buffer is also used for data returned
from the transponder.

int* Length This parameter works as Input/Output-variable. It holds the
payload-length of Data in the directions Reader→Tag and
Tag→Reader.

int BufferSize This parameter holds the array-size of Data in bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 125 of 196

17 ISO15693 Specific Transponder Operations

17.2 Gather Tag Specific Information

17.2.1 Get System Information

This function returns more in-depth information of the tag. The function is available in two
versions (Protocol Extension flag set or reset), as some tag types like ST 24LR16/64 require
the Protocol Extension flag to be set for proper operation.

bool ISO15693_GetSystemInformation
(
TISO15693_SystemInfo* SystemInfo
);

bool ISO15693_GetSystemInformationExt
(
TISO15693_SystemInfo* SystemInfo
);

Parameters:

TISO15693_SystemInfo*
SystemInfo

Pointer to the structure which receives the System Informa-
tion.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Remark: As the GetSystemInformation command is no mandatory ISO15693 com-
mand, it is not implemented in all tag types available on the market.

Page 126 of 196

17 ISO15693 Specific Transponder Operations

Members Length
(Bits)

Description

byte DSFID_Present 1 Set to 1 if DSFID is present

byte AFI_Present 1 Set to 1 if AFI is present

byte
VICC_Memory_Size_Present

1 Set to 1 if BlockSize and Number_of_Blocks
are present

byte IC_Reference_Present 1 Set to 1 if IC_Reference is present

byte Res1 4 Reserved for future use

byte UID[8] 64 Unique Identifier

byte DSFID 8 Data Storage Format Identifier

byte AFI 8 Application Family Identifier

byte BlockSize 8 Size of one data block in bytes

uint16_t Number_of_Blocks 16 Number of available blocks

byte IC_Reference 8 Meaning defined by the IC manufacturer

Table 17.1: Definition of TISO15693_SystemInfo

17.2.2 Get Tag Type

The ISO15693 API incorporates two methods to determine the tag type, either by analysing
the UID or the System Information structure.

17.2.2.1 Get Tag Type From UID

This function can be used to determine the tag type of ISO15693 compliant transponders if
only the UID is available.

int ISO15693_GetTagTypeFromUID
(
byte* UID
);

Parameters:

byte* UID This parameter holds the UID. Watch for the correct byte or-
der; UID[0] shall have the value 0xE0

Return: The return-value is the determined tag-type which is repre-
sented by one of the constants in the table below.

Page 127 of 196

17 ISO15693 Specific Transponder Operations

Definition Value Manufacturer Tag Type

ISO15693_TAGTYPE_ICODESL2 0x00 NXP ICode SL2

ISO15693_TAGTYPE_ICODESL2S 0x01 ICode SL2S

ISO15693_TAGTYPE_UNKNOWNNXP 0x0F Unknown

ISO15693_TAGTYPE_TAGITHFIPLUSINLAY 0x10 TI Tag-It HFI Plus
Inlay

ISO15693_TAGTYPE_TAGITHFIPLUSCHIP 0x11 Tag-It HFI Plus
Chip

ISO15693_TAGTYPE_TAGITHFISTD 0x12 Tag-It HFI
Standard

ISO15693_TAGTYPE_TAGITHFIPRO 0x13 Tag-It HFI Pro

ISO15693_TAGTYPE_UNKNOWNTI 0x1F Unknown

ISO15693_TAGTYPE_UNKNOWNST 0x4F ST Unknown

ISO15693_TAGTYPE_SRF55V02P 0x50 Infineon SRF55V02P

ISO15693_TAGTYPE_SRF55V10P 0x51 SRF55V10P

ISO15693_TAGTYPE_SRF55V02S 0x52 SRF55V02S

ISO15693_TAGTYPE_SRF55V10S 0x53 SRF55V10S

ISO15693_TAGTYPE_UNKNOWNINFINEON 0x5F Unknown

ISO15693_TAGTYPE_UNKNOWN 0xFF Unknown Unknown
ISO15693

Table 17.2: Retrievable tag types from UID

Page 128 of 196

17 ISO15693 Specific Transponder Operations

17.2.2.2 Get Tag Type From System Information

This function can be used to determine the tag type of ISO15693 compliant transponders if
the System Information is available.

int ISO15693_GetTagTypeFromSystemInfo
(
TISO15693_SystemInfo* SystemInfo
);

Parameters:

TISO15693_SystemInfo*
SystemInfo

Pointer to the structure which holds the System Information.

Return: The return-value is the determined tag-type which is repre-
sented by one of the constants in the table below.

Page 129 of 196

17 ISO15693 Specific Transponder Operations

Definition Value Manufacturer Tag Type

ISO15693_TAGTYPE_ICODESL2 0x00 NXP ICode SL2

ISO15693_TAGTYPE_ICODESL2S 0x01 ICode SL2S

ISO15693_TAGTYPE_UNKNOWNNXP 0x0F Unknown

ISO15693_TAGTYPE_TAGITHFIPLUSINLAY 0x10 TI Tag-It HFI Plus
Inlay

ISO15693_TAGTYPE_TAGITHFIPLUSCHIP 0x11 Tag-It HFI Plus
Chip

ISO15693_TAGTYPE_TAGITHFISTD 0x12 Tag-It HFI
Standard

ISO15693_TAGTYPE_TAGITHFIPRO 0x13 Tag-It HFI Pro

ISO15693_TAGTYPE_UNKNOWNTI 0x1F Unknown

ISO15693_TAGTYPE_MB89R118 0x20 Fuji MB89R118

ISO15693_TAGTYPE_MB89R119 0x21 MB89R119

ISO15693_TAGTYPE_MB89R112 0x22 MB89R112

ISO15693_TAGTYPE_UNKNOWNFUJI 0x2F Unknown

ISO15693_TAGTYPE_24LR16 0x30 ST 24LR16

ISO15693_TAGTYPE_24LR64 0x31 24LR64

ISO15693_TAGTYPE_LRI1K 0x40 LRI1K

ISO15693_TAGTYPE_LRI2K 0x41 LRI2K

ISO15693_TAGTYPE_LRIS2K 0x42 LRIS2K

ISO15693_TAGTYPE_LRIS64K 0x43 LRIS64K

ISO15693_TAGTYPE_UNKNOWNST 0x4F Unknown

ISO15693_TAGTYPE_SRF55V02P 0x50 Infineon SRF55V02P

ISO15693_TAGTYPE_SRF55V10P 0x51 SRF55V10P

ISO15693_TAGTYPE_SRF55V02S 0x52 SRF55V02S

ISO15693_TAGTYPE_SRF55V10S 0x53 SRF55V10S

ISO15693_TAGTYPE_UNKNOWNINFINEON 0x5F Unknown

ISO15693_TAGTYPE_UNKNOWN 0xFF Unknown Unknown
ISO15693

Table 17.3: Retrievable tag types from System Information

Page 130 of 196

17 ISO15693 Specific Transponder Operations

17.3 Read/Write Data

17.3.1 Read Single Block

Read a single data block from the transponder. The function is available in two versions
(Protocol Extension flag set or reset), as some tag types like ST 24LR16/64 require the Pro-
tocol Extension flag to be set for proper operation.

bool ISO15693_ReadSingleBlock
(
int BlockNumber,
byte* BlockData,
int* Length,
int BufferSize
);

bool ISO15693_ReadSingleBlockExt
(
int BlockNumber,
byte* BlockData,
int* Length,
int BufferSize
);

Parameters:

int BlockNumber This parameter holds the number of the block to be read.

byte* BlockData This parameter holds the data which was read from the tag if
the operation was successful. Note that the block size varies
between different tag types, so the array size of BlockData
should be set to a reasonable value.

int* Length This parameter holds the length of data which was read from
the tag in bytes.

int BufferSize This parameter holds the array-size of BlockData in bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

17.3.2 Write Single Block

Write to a single data block of the transponder. The function is available in two versions
(Protocol Extension flag set or reset), as some tag types like ST 24LR16/64 require the Pro-
tocol Extension flag to be set for proper operation.

Page 131 of 196

17 ISO15693 Specific Transponder Operations

bool ISO15693_WriteSingleBlock
(
int BlockNumber,
const byte* BlockData,
int Length
);

bool ISO15693_WriteSingleBlockExt
(
int BlockNumber,
const byte* BlockData,
int Length
);

Parameters:

int BlockNumber This parameter holds the number of the block to be written.

const byte* BlockData This parameter holds the data which shall be written to the
tag.

int Length This parameter holds the length of data which shall be written
to the tag in bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 132 of 196

18 LEGIC-Specific Functions

18 LEGIC-Specific Functions

This chapter describes functions for accessing LEGIC functionality.

Notes:

• These functions are available at TWN4 LEGIC NFC only.

• The style of functions has been changed due to additional support of SM4500: All
functions are starting with SM4X00 instead of SM4200. Old-style functions are sup-
ported via macros.

18.1 Direct Access of LEGIC Chip

TWN4 LEGIC NFC has a built-in LEGIC chip type SM4200 or SM4500. There are functions
available to directly communicate with this chipset.

Note:

Due to license restrictions, this documentation only mentions the functions itself. In order
to use full functionality of the LEGIC chip, appropriate documentation is required, which is
available under NDA (none-disclosure agreement) only.

18.1.1 SM4X00_GenericRaw

Send a command and receive the response from SM4X00. Command and response are
expected to include CRC. This function is intended to be used for end-to-end communication
between SM4X00 and a host.

bool SM4X00_GenericRaw(const byte *TXData,int TXDataLength,
byte *RXData,int *RXDataLength,
int MaxRXDataLength,int Timeout);

Page 133 of 196

18 LEGIC-Specific Functions

Parameters:

const byte *TXData Pointer to an array of bytes, which contains the command to
be sent to SM4X00.

int TXDataLength Number of bytes to be sent to SM4X00.

byte *RXData Pointer to an array of bytes, which receives response from
SM4X00

int *RXDataLength Pointer to an integer, which receives the actually read number
of bytes.

int MaxRXDataLength A value, which specifies the maximum number of bytes, which
can be received byte RXData, thus the buffer size.

int Timeout Maximum time, the function should wait for a response from
SM4X00. This value is specified in milliseconds.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

18.1.2 SM4X00_Generic

Send a command and receive the response from SM4X00. This function is intended to be
used by standand-along applications.

bool SM4X00_Generic(const byte *TXData,int TXDataLength,
byte *RXData,int *RXDataLength,
int MaxRXDataLength,int Timeout);

Page 134 of 196

18 LEGIC-Specific Functions

Parameters:

const byte *TXData Pointer to an array of bytes, which contains the command to
be sent to SM4X00. The command has to be specified W/O
leading length byte and W/O closing CRC value.

int TXDataLength Number of bytes contained in TXData.

byte *RXData Pointer to an array of bytes, which receives response from
SM4X00. Received data is W/O length byte and W/O CRC
value.

int *RXDataLength Pointer to an integer, which receives length of the actually re-
ceived payload.

int MaxRXDataLength A value, which specifies the maximum number of bytes, which
can be received byte RXData, thus the buffer size.

int Timeout Maximum time, the function should wait for a response from
SM4X00. This value is specified in milliseconds.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

18.1.3 SM4X00_StartBootloader

Start boot loader of SM4X00.

bool SM4X00_StartBootloader(byte *TLV,int *TLVLength,int MaxTLVLength)

Parameters:

byte *TLV

int *TLVLength

int MaxTLVLength

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

18.1.4 SM4X00_EraseFlash

Erase flash of SM4X00.

bool SM4X00_EraseFlash(void)

Parameters: None.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 135 of 196

18 LEGIC-Specific Functions

18.1.5 SM4X00_ProgramBlock

Program one block of data into the flash of SM4X00.

bool SM4X00_ProgramBlock(byte *Data,bool *Done)

Parameters:

byte *Data Pointer to an array of bytes.

bool *Done Pointer to a boolean variable, which receives the status, if the
last block was flashed.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 136 of 196

19 iCLASS Specific Transponder Operations

19 iCLASS Specific Transponder Operations

This chapter handles specific operations with iCLASS transponders. Prerequisites for this
functionality are:

• The reader must be the TWN4 MIFARE NFC version

• An iCLASS SIO card must be inserted into one of the SAM slots

• The I-Option must be activated

19.1 Read PAC Bits

This function can be used to read the PAC (Physical Access Control) bits from an iCLASS
transponder. The transponder must have been selected before this function can be called.

bool ICLASS_GetPACBits
(
byte* PACBits,
int* PACBitCnt,
int MaxPACBytes
);

Parameters:

byte* PACBits After successful completion of this function, the buffer referred
by this parameter holds the PAC bits read from the transpon-
der. Take care for adequate dimensioning.

int* PACBitCnt After successful completion of this function, this parameter
holds the number of bits, the PAC contains.

int MaxPACBytes This parameter holds the maximum number of bytes which
the buffer PACBits can hold.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Remark: There are transponders available, that have not been configured to deliver the
PAC bits. In this case, if an attempt is made to read these bits, the function
returns false.

Page 137 of 196

19 iCLASS Specific Transponder Operations

19.2 Example

The following example shows how to manually read the PAC from an iCLASS transponder
using the built-in system functions.

byte ID[8];
int TagType;
int IDBitCnt;

byte PACBits[8];
int PACBitCnt;

// Search only for iCLASS transponders
SetTagTypes(0, TAGMASK(HFTAG_HIDICLASS));

while (true)
{

// Search for transponders
if (!SearchTag(&TagType,&IDBitCnt,ID,sizeof(ID)))

continue;

// Read the PAC bits
if (!ICLASS_GetPACBits(PACBits, &PACBitCnt, sizeof(PACBits)))

continue;

// Output what was read from the card
WriteHex(PACBits, PACBitCnt, (PACBitCnt+7)/8*2);
WriteChar(’\r’);

}

Page 138 of 196

20 Simple NDEF Exchange Protocol (SNEP)

20 Simple NDEF Exchange Protocol (SNEP)

This chapter handles transmission of NDEF (NFC Data Exchange Format) messages be-
tween a TWN4 reader and a NFC enabled device using the Simple NDEF Exchange Proto-
col. For message exchange, a NFC Peer-to-Peer connection must have been established.
The SNEP service provides both a logical In-Box and a logical Out-Box for receiving and
transmitting messages. Each message box works as FIFO, which enables reader and host-
software to exchange even large messages as a stream of data. This functionality is also
useful to reduce outbound buffering on host side. Each message box can manage only one
message at the same time, so message-queuing is currently not supported. Large mes-
sages that do not fit into the internal FIFO must be transmitted fragmented, so the sending
side must break up the message into smaller parts that fit into the FIFO, the receiving side
must reassemble the parts as a consequence. When dealing with large messages, it might
become necessary to read data from the FIFO fast enough during a ongoing transmission
in order to prevent any tailbacks.
Note: This functionality is only available on TWN4 MIFARE NFC.

20.1 Initialize SNEP Service

Use this function for initialization and starting of the built-in SNEP service. The function
should be called at last once before issuing SearchTag() with TagType HFTAG_NFCP2P en-
abled. Depending on the implementation of the counterpart NFC device, there might be a
delay until the SNEP service is activated on both communication peers. This time usually
ranges around 100 ms up to 500 ms.

bool SNEP_Init(void);

Parameters: None.

Return: If the SNEP service was successfully started, the return value
is true, otherwise it is false.

Page 139 of 196

20 Simple NDEF Exchange Protocol (SNEP)

20.2 Get Connection State

Use this function to query the current connection state of the SNEP service. This can be
used for checking e.g. any loss of the physical NFC Peer-to-Peer connection.

int SNEP_GetConnectionState(void);

Parameters: None.

Return: SNEP_STATE_DEINIT: The SNEP service has not been started.

SNEP_STATE_SLEEP: The SNEP service has been started, but
there is no active connection.

SNEP_STATE_IDLE: The SNEP service is running, but there is
currently no active exchange of messages.

SNEP_STATE_CONNCLIENT: The SNEP service is running in
client mode.

SNEP_STATE_CONNSERVER: The SNEP service is running in
server mode.

20.3 Query Message FIFO

Use this function to get information of the respective message FIFO.

int SNEP_GetFragmentByteCount(int Direction);

Parameters:

int Direction Specify the message box to be queried by this parameter.
Valid values are DIR_OUT (Out-Box) or DIR_IN (In-Box), use
one of these predefined constants.

Return: If the In-Box is queried, the return value is the current number
of bytes which are available for reading from host side. If the
Out-Box is queried, the return value is the number of bytes
that can be written to the FIFO.

Page 140 of 196

20 Simple NDEF Exchange Protocol (SNEP)

20.4 Transmit NDEF Message

This section handles transmission of NDEF messages. A typical communication flow for
transmitting a NDEF message looks like this:

Start SNEP service
⇓

Establish NFC Peer-to-Peer connection
⇓

Begin Message (Setup total message length)
⇓

Send Message Fragment 1
⇓

Send Message Fragment 2
⇓
...
⇓

Send Message Fragment n

20.4.1 Begin Message

Use this function to setup the total message length. A message can reach up to 4 GBytes.

bool SNEP_BeginMessage(uint32_t MsgByteCnt);

Parameters:

uint32_t MsgByteCnt Specify the total message length by this parameter.

Return: If the operation was successful, the return value is true. If
a previously set up message has not been transmitted com-
pletely, the return value is false.

20.4.2 Send Message Fragment

Use this function to store a fragment of a message in the Out-Box FIFO. The message must
be transmitted completely in order to make the FIFO available for new outgoing messages.

bool SNEP_SendMessageFragment(const byte* MsgFrag, int FragByteCnt);

Page 141 of 196

20 Simple NDEF Exchange Protocol (SNEP)

Parameters:

const byte* MsgFrag Specify the buffer that holds the message fragment by this
parameter.

int FragByteCnt This parameter holds the length the message fragment.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 142 of 196

20 Simple NDEF Exchange Protocol (SNEP)

20.4.3 Example

The following example demonstrates transmission of a NDEF message from a TWN4 MI-
FARE NFC reader to another NFC device running SNEP:

const byte NDEF_Message[] = { /* Your NDEF message */ };

void TransmitNDEFMessage(void)
{

// Wait for SNEP service is running
unsigned long SNEPConnectionStartTime = GetSysTicks();
// SNEP service must be at least in IDLE state
while (SNEP_GetConnectionState() < SNEP_STATE_IDLE)
{

if (GetSysTicks() - SNEPConnectionStartTime > 500)
return;

}
// Transmit NDEF message as long as a NFC connection is established
int FragmentOffset = 0;
int NDEF_MessageByteCnt = sizeof(NDEF_Message);
while (true)
{

if (SNEP_GetConnectionState() < SNEP_STATE_IDLE)
return;

// Get available buffer size from operating system for message fragmenting
FragmentSize = SNEP_GetFragmentByteCount(DIR_OUT);
if (FragmentSize > 0)
{

// Is this the first fragment?
if (FragmentOffset == 0)
{

// Yes, Setup message
if (!SNEP_BeginMessage(NDEF_MessageByteCnt))

return;
}
// Calculate fragment size
if (NDEF_MessageByteCnt - FragmentOffset <= FragmentSize)

FragmentSize = NDEF_MessageByteCnt - FragmentOffset;
// Send a fragment of the message
if (!SNEP_SendMessageFragment(&NDEF_Message[FragmentOffset], FragmentSize))

return;
FragmentOffset += FragmentSize;

}
// Was the message completely tansmitted?
if (FragmentOffset == NDEF_MessageByteCnt)

return;
}

}

Page 143 of 196

20 Simple NDEF Exchange Protocol (SNEP)

#define MAXIDBYTES 10

byte ID[MAXIDBYTES];
int IDBitCnt;
int TagType;

int main(void)
{

// Enable NFC Peer-to-Peer mode
SetTagTypes(0, TAGMASK(HFTAG_NFCP2P));

// Start SNEP service
SNEP_Init();

while (true)
{

// Search a transponder
if (SearchTag(&TagType, &IDBitCnt, ID, sizeof(ID)))
{

if (TagType == HFTAG_NFCP2P)
{

// Transmit NDEF message
TransmitNDEFMessage();

}
}

}
}

Page 144 of 196

20 Simple NDEF Exchange Protocol (SNEP)

20.5 Receive NDEF Message

This section handles reception of NDEF messages. A typical communication flow for receiv-
ing a NDEF message looks like this:

Start SNEP service
⇓

Establish NFC Peer-to-Peer connection
⇓

Test Message (Get total message length)
⇓

Receive Message Fragment 1
⇓

Receive Message Fragment 2
⇓
...
⇓

Receive Message Fragment n

20.5.1 Test Message

Use this function to test if there is a new message available in the In-Box. The function
returns the total length of the message. A message can reach up to 4 GBytes.

bool SNEP_TestMessage(uint32_t* MsgByteCnt);

Parameters:

uint32_t* MsgByteCnt The total message length is returned by this parameter.

Return: If a message is available, the return value is true, otherwise
it is false.

20.5.2 Receive Message Fragment

Use this function to receive a fragment of a message stored in the In-Box FIFO. A message
must be read completely from the FIFO in order to make it available for new incoming mes-
sages.

bool SNEP_ReceiveMessageFragment(byte* MsgFrag, int FragByteCnt);

Page 145 of 196

20 Simple NDEF Exchange Protocol (SNEP)

Parameters:

byte* MsgFrag Specify the buffer that holds the message fragment by this
parameter.

int FragByteCnt This parameter holds the length the message fragment to be
read.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 146 of 196

20 Simple NDEF Exchange Protocol (SNEP)

20.5.3 Example

The following example demonstrates reception of a NDEF message from another NFC de-
vice running SNEP:

void ReceiveNDEFMessage(void)
{

// Wait for SNEP service is running
unsigned long SNEPConnectionStartTime = GetSysTicks();
// SNEP service must be at least in IDLE state
while (SNEP_GetConnectionState() < SNEP_STATE_IDLE)
{

if (GetSysTicks() - SNEPConnectionStartTime > 500)
return;

}
// Receive all NDEF messages as long as a NFC connection is established
while (true)
{

uint32_t MessageSize;
byte Message[4096];
// Wait for a incoming NDEF message or loss of connection
while (!SNEP_TestMessage(&MessageSize))
{

if (SNEP_GetConnectionState() < SNEP_STATE_IDLE)
return;

}
// A NDEF message was announced. Now read it.
int FragmentOffset, FragmentSize;
for (FragmentOffset = 0; FragmentOffset < MessageSize; FragmentOffset += FragmentSize)
{
// Wait, till fragment of the message arrives

do
{

if (SNEP_GetConnectionState() < SNEP_STATE_IDLE)
return;

FragmentSize = SNEP_GetFragmentByteCount(DIR_IN);
}
while (FragmentSize == 0);
SNEP_ReceiveMessageFragment(&Message[FragmentOffset],FragmentSize);

}
// We read the entire NDEF message

}
}

#define MAXIDBYTES 10

byte ID[MAXIDBYTES];
int IDBitCnt;
int TagType;

Page 147 of 196

20 Simple NDEF Exchange Protocol (SNEP)

int main(void)
{

// Enable NFC Peer-to-Peer mode
SetTagTypes(0, TAGMASK(HFTAG_NFCP2P));

// Start SNEP service
SNEP_Init();

while (true)
{

// Search a transponder
if (SearchTag(&TagType, &IDBitCnt, ID, sizeof(ID)))
{

if (TagType == HFTAG_NFCP2P)
{

// Receive NDEF message
ReceiveNDEFMessage();
DoSomething();

}
}

}
}

Page 148 of 196

21 Contact Card Operations

21 Contact Card Operations

This chapter handles the usage of ISO7816 compliant Integrated Circuit Cards such as ID-1
or SAM (Secure Access Module) cards. The TWN4 ISO7816 API offers different system
functions for covering different imaginable scenarios. A typical communication flow with
contact cards looks like this:

Query card slot status
⇓

Activate card
⇓

PPS and set communication parameters
⇓

Exchange APDUs
⇓

Deactivate card

21.1 Query Card Slot Status

This function shall be used to query information of the physical card slot status, e.g. to find
out if a card is inserted or not. The function returns the slot status in CCID compliant style,
this means it return information about slot status, error information and clock status. The
internal state of the card is not changed. Please note, depending on the used hardware
(TWN4 Desktop or TWN4 SmartCard) the amount of retrievable information differs.

bool ISO7816_GetSlotStatus(int Channel, TISO7816SlotStatus* SlotStatus);

Page 149 of 196

21 Contact Card Operations

Members Length
(Bits)

Description

TISO7816StatusReg bStatus 8 Slot status register compliant to CCID. See the
definition of TISO7816StatusReg for meaning
of the different bit fields.

byte bError 8 Error code compliant to CCID.

byte bClockStatus 8 Clock status information compliant to CCID.
Possible values are:
ISO7816_CLOCKSTATUS_RUNNING,
ISO7816_CLOCKSTATUS_CLKSTPL,
ISO7816_CLOCKSTATUS_CLKSTPH,
ISO7816_CLOCKSTATUS_CLKSTPU.

Table 21.1: Definition of TISO7816SlotStatus

Members Length
(Bits)

Description

byte bmICCStatus 2 Physical status of the card slot. Possible val-
ues are: ISO7816_ICCPRESENTANDACTIVE,
ISO7816_ICCPRESENTANDINACTIVE and
ISO7816_NOICCPRESENT.

byte bmRFU 4 These bits are reserved for future use.

byte bmCommandStatus 2 Command status information compliant to
CCID.

Table 21.2: Definition of TISO7816StatusReg

Parameters:

int Channel Specify a communication channel by this parameter. Valid val-
ues are CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1,
use one of these predefined constants.

TISO7816SlotStatus*
SlotStatus

The card slot status is returned by this parameter. See the
definition of TISO7816SlotStatus for meaning of each mem-
ber.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 150 of 196

21 Contact Card Operations

21.2 Card Activation

This function shall be used to activate and initialize communication with the card inserted
in one of the slots connected to the TWN4 reader. All communication parameters are reset
to default. Depending on the hardware platform, the reader shows different behaviour re-
garding reset-handling of the card: On TWN4 Desktop, calling this function always leads to
a warm reset, on TWN4 SmartCard, the first call performs a cold reset and any subsequent
function call leads to a warm reset until the card is deactivated. The result of the entire
operation is the receipt of the Answer To Reset (ATR) from the card. Based on the content
of the ATR, the user may decide how to further proceed with the card. Note that selection of
voltage level is only available for TWN4 SmartCard.

bool ISO7816_IccPowerOn
(
int Channel,
byte* ATR,
int* ATRByteCnt,
int MaxATRByteCnt,
byte bPowerSelect,
TISO7816StatusReg* bStatus,
byte* bError
);

Page 151 of 196

21 Contact Card Operations

Parameters:

int Channel Specify a communication channel by this parameter. Valid val-
ues are CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1,
use one of these predefined constants.

byte* ATR After successful completion of this function, the buffer referred
by this parameter holds the ATR which was read from the
card. Take care for adequate dimensioning.

int* ATRByteCnt After successful completion of this function, this parameter
holds the number of bytes, the ATR contains.

int MaxATRByteCnt This parameter holds the array-size of ATR in bytes.

byte bPowerSelect Specify the operating voltage level which shall be used
for the card. Valid values are ISO7816_POWERSELECT_AUTO,
ISO7816_POWERSELECT_5V, ISO7816_POWERSELECT_3V, or
ISO7816_POWERSELECT_1V8, use one of these predefined
constants.

TISO7816StatusReg*
bStatus

The CCID compliant slot status register is returned by this pa-
rameter. See the definition of TISO7816StatusReg for meaning
of the different bit fields.

byte* bError The CCID compliant error code is returned by this parameter.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

21.3 Card Deactivation

This function shall be used to deactivate and power off the card. When this function was
called on TWN4 SmartCard reader, a subsequent call of IccPowerOn() leads to a cold reset
of the card.

bool ISO7816_IccPowerOff(int Channel, TISO7816SlotStatus* SlotStatus);

Page 152 of 196

21 Contact Card Operations

Parameters:

int Channel Specify a communication channel by this parameter. Valid val-
ues are CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1,
use one of these predefined constants.

TISO7816SlotStatus*
SlotStatus

The card slot status is returned by this parameter. See the
definition of TISO7816SlotStatus for meaning of each mem-
ber.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

21.4 Set Communication Settings

This function shall be used to assign new communication settings to the respective card slot.
After calling this function, the communication parameters which have been negotiated with
the card during Protocol And Parameter Selection (PPS) become valid. For issuing a PPS,
please refer to the function ISO7816_Transceive. Specific communication parameters must
be obtained from the ATR, for detailed information refer to standard ISO7816-3.

bool ISO7816_SetCommSettings
(
int Channel,
const TISO7816CommSettings* CommSettings
);

Parameters:

int Channel Specify a communication channel by this parameter. Valid val-
ues are CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1,
use one of these predefined constants.

const
TISO7816CommSettings*
CommSettings

The new communication settings are passed by this parame-
ter. See the definition of TISO7816CommSettings for meaning
of each member.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 153 of 196

21 Contact Card Operations

Members Length
(Bits)

Description

byte Protocol 8 Specify the protocol to be used. Possi-
ble values are: ISO7816_PROTOCOL_T0 and
ISO7816_PROTOCOL_T0.

byte Freq 8 Specify the clock frequency which shall be ap-
plied to the card. Chose one of the predefined
constants ISO7816_FREQUENCY_1000000,
ISO7816_FREQUENCY_1250000,
ISO7816_FREQUENCY_1875000,
ISO7816_FREQUENCY_2500000,
ISO7816_FREQUENCY_3750000,
ISO7816_FREQUENCY_5000000,
ISO7816_FREQUENCY_7500000 or
ISO7816_FREQUENCY_15000000.

uint16_t F 16 Specify a non-ISO value for F.

uint16_t D 16 Specify a non-ISO value for D.

union TProtocolData
ProtocolData

56 See definition of TProtocolData for details.

Table 21.3: Definition of TISO7816CommSettings

Members Length
(Bits)

Description

TProtocolDataT0 T0 40 See definition of TProtocolDataT0 for details.

TProtocolDataT1 T1 56 See definition of TProtocolDataT1 for details.

Table 21.4: Definition of TProtocolData

Page 154 of 196

21 Contact Card Operations

Members Length
(Bits)

Description

byte bmFindexDindex 8 Bit 7-4: FI, Index into table 7 of ISO/IEC 7816-
3:2006 selecting a clock rate conversion fac-
tor. Bit 3-0: DI, Index into table 8 of ISO/IEC
7816-3:2006 selecting a baud rate conversion
factor. This value shall be obtained from TA1
of the ATR.

byte bmTCCKST0 8 This value shall be set to 00h.

byte bGuardTimeT0 8 Extra Guardtime between two characters. Add
0 to 254 etu to the normal guardtime of 12 etu.
FFh is the same as 00h. This value shall be
obtained from TC1 of the ATR.

byte bWaitingIntegerT0 8 Waiting time between transmission of a com-
mand and reception of the response. This
value is specified in TC2 of the ATR. If TC2
is not present, the default value is 10.

byte bClockStop 8 This value shall be set to 00h.

Table 21.5: Definition of TProtocolDataT0

21.5 Transparent Data Transmission

This function shall be used for byte-wise communication with the card.

bool ISO7816_Transceive
(
int Channel,
const byte* TX,
int LenTX,
byte* RX,
int* LenRX,
int MaxRXByteCnt
);

Page 155 of 196

21 Contact Card Operations

Members Length
(Bits)

Description

byte bmFindexDindex 8 Bit 7-4: FI, Index into table 7 of ISO/IEC 7816-
3:2006 selecting a clock rate conversion fac-
tor. Bit 3-0: DI, Index into table 8 of ISO/IEC
7816-3:2006 selecting a baud rate conversion
factor. This value shall be obtained from TA1
of the ATR.

byte bmTCCKST1 8 This value shall be set to 00h.

byte bGuardTimeT1 8 Extra Guardtime (0 to 254 etu between two
characters). If value is FFh, then guardtime is
reduced by 1 etu. This value shall be obtained
from TC1 of the ATR.

byte bWaitingIntegerT1 8 Bit 7-4: BWI, values 0-9 valid. Bit 3-0: CWI,
values 0-Fh valid. This value is specified in
the first TB for T=1 in the ATR.

byte bClockStop 8 This value shall be set to 00h.

byte bIFSC 8 Size of negotiated IFSC in bytes. This value is
specified in the first TA for T=1 in the ATR.

byte bNadValue 8 This value shall be set to 00h.

Table 21.6: Definition of TProtocolDataT1

Page 156 of 196

21 Contact Card Operations

Parameters:

int Channel Specify a communication channel by this parameter. Valid val-
ues are CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1,
use one of these predefined constants.

const byte* TX This buffer holds the data which shall be transmitted to the
card.

int LenTX This parameter specifies the data-length in bytes which shall
be transmitted to the card.

byte* RX This buffer holds the data which was read from the card. Take
care for adequate dimensioning.

int* LenRX After successful completion of this function, this parameter
holds the number of bytes read from the card.

int MaxRXByteCnt This parameter holds the array-size of RX in bytes.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

21.6 Exchange Of APDUs

This function shall be used for APDU exchange based on T=0/T=1 protocol according to
ISO7816-3.

bool ISO7816_ExchangeAPDU
(
int Channel,
const TISO7816_ProtocolHeader* Header,
const byte* TXData,
int TXByteCnt,
byte* RXData,
int* RXByteCnt,
int MaxRXByteCnt,
uint16_t* StatusWord
);

Page 157 of 196

21 Contact Card Operations

Members Length
(Bits)

Description

byte CLA 8 This member holds the CLA-value.

byte INS 8 This member holds the INS-code.

byte P1 8 This member holds the parameter P1.

byte P2 8 This member holds the parameter P2.

uint16_t Lc 16 This member holds Lc which defines the size
of the following data-field.

uint16_t Le 16 This member holds Le which defines the maxi-
mum expected size of the response data-field.

struct
TISO7816_ProtocolHeaderFlags
Flags

8 This member holds additional APDU informa-
tion.

Table 21.7: Definition of TISO7816_ProtocolHeader

Parameters:

int Channel Specify a communication channel by this parameter. Valid val-
ues are CHANNEL_SAM1 through CHANNEL_SAM4 or CHANNEL_SC1,
use one of these predefined constants.

const
TISO7816_ProtocolHeader
*Header

This parameter holds basic APDU information.

const byte* TXData This buffer holds the data field of the APDU.

int TXByteCnt This parameter specifies the data-length in bytes of the data-
field.

byte* RXData This buffer holds the data-field of the received APDU.

int* RXByteCnt After successful completion of this function, this parameters
holds the data-field size of the received APDU.

int MaxRXByteCnt This parameter holds the array-size of RXData in bytes.

uint16_t* StatusWord This parameter holds the status word received from the card.

Return: If the operation was successful, the return value is true, oth-
erwise it is false.

Page 158 of 196

21 Contact Card Operations

Members Length
(Bits)

Description

byte LePresent 1 If set to true, Le is transmitted.

byte ExtendedAPDU 1 If set to true, this APDU is sent as Extended
APDU.

byte RFU 6 Reserved for future use.

Table 21.8: Definition of TISO7816_ProtocolHeaderFlags

21.7 Examples

21.7.1 PPS Example

The following example shows how to make a PPS with an ISO7816 card.

bool ISO7816_PPS(int Channel, byte Protocol, byte* bmFindexDindex)
{

byte Cmd[4];
byte Res[4];
int TxByteCnt;
int RxByteCnt;

// PPS always starts with 0xFF
Cmd[0] = 0xFF;
// The second byte stores the desired protocol
Cmd[1] = Protocol & 0x0F;
// Is bmFindexDindex present?
if (bmFindexDindex != NULL)
{

// Yes, prepare the command accordingly
Cmd[1] |= 0x10;
Cmd[2] = *bmFindexDindex;
// Calculate the BCC over all command bytes
Cmd[3] = Cmd[0] ^ Cmd[1] ^ Cmd[2];
TxByteCnt = 4;

}
else
{

// FindexDindex is not present, calculate only BCC
Cmd[2] = Cmd[0] ^ Cmd[1];
TxByteCnt = 3;

}
// Send PPS request to the card, get response
if (!ISO7816_Transceive(Channel, Cmd, TxByteCnt, Res,

&RxByteCnt, sizeof(Res)))
return false;

Page 159 of 196

21 Contact Card Operations

// We expect the card to echo the request in its response
if (RxByteCnt != TxByteCnt)

return false;
return memcmp(Cmd, Res, RxByteCnt) == 0;

}

21.7.2 Communication Example

The following example shows how to prepare a ISO7816 card for communication at T=1
protocol and exchange APDUs.

byte ATR[32];
int ATRByteCnt;

TISO7816SlotStatus SlotStatus;
TProtocolDataT1 ProtocolDataT1;

TISO7816_ProtocolHeader Header;
byte TXData[128];
byte RXData[128];
int RXByteCnt;
uint16_t SW12;

// We want to use T=1 protocol with the following non-default values
ProtocolDataT1.bmFindexDindex = 0x98;
ProtocolDataT1.bmTCCKST1 = 0;
ProtocolDataT1.bGuardTimeT1 = 0xFF;
ProtocolDataT1.bmWaitingIntegersT1 = 0x55;
ProtocolDataT1.bClockStop = 0;
ProtocolDataT1.bIFSC = 0xFE;
ProtocolDataT1.bNadValue = 0x00;

MainLoop:
while (true)
{

// Is a card inserted in CHANNEL_SC1?
if (!ISO7816_GetSlotStatus(CHANNEL_SC1, &SlotStatus))

goto MainLoop;
// Card slot empty?
if (SlotStatus.bStatus.bmICCStatus == ISO7816_NOICCPRESENT)

goto MainLoop;
// Perform activation of the card and receive ATR
if (!ISO7816_IccPowerOn

(
CHANNEL_SC1,
ATR,
&ATRByteCnt,
sizeof(ATR),

Page 160 of 196

21 Contact Card Operations

ISO7816_POWERSELECT_5V,
&SlotStatus.bStatus,
&SlotStatus.bError
))
goto MainLoop;

// We expect the card to be present and active
if (SlotStatus.bStatus.bmICCStatus != ISO7816_ICCPRESENTANDACTIVE)

goto MainLoop;
// Perform PPS for T=1 protocol
if (!ISO7816_PPS(CHANNEL_SC1, ISO7816_PROTOCOL_T1,

&ProtocolDataT1.bmFindexDindex))
goto MainLoop;

// Let’s prepare our APDU. We want to select the Masterfile (MF)
// of a PKI card by its SFI (0x3F00).
Header.CLA = 0x00;
Header.INS = 0xA4;
Header.P1 = 0x00;
Header.P2 = 0x00;
Header.Lc = 0x0002;
Header.Le = 0x0000;
Header.Flags.LePresent = true;
Header.Flags.ExtendedAPDU = false;
TXData[0] = 0x3F;
TXData[1] = 0x00;

// Exchange the APDU
if (!ISO7816_ExchangeAPDU(CHANNEL_SC1, &Header, TXData, Header.Lc,

RXData, &RXByteCnt, sizeof(RXData), &SW12))
goto MainLoop;

// Check status word of the received APDU
if (SW12 == 0x9000)
{

// Further APDUs may follow...
DoSomething();

}
}

Page 161 of 196

22 Cryptographic Operations

22 Cryptographic Operations

The cryptographic API incorporates methods for encryption/decryption of data, these are
Triple-DES (Data Encryption Standard) or AES (Advanced Encryption Standard). TDES is
available in two versions that support different key-lengths: 128 bit (TDES2K) and 192 bit
(TDES3K).
The implementation of TDES is based on FIPS PUB 46-3. The method always operates
on entire data blocks of 8 bytes. The DES algorithm is passed three times for one TDES
operation. In case of TDES2K, the 128 bit key is hereby split into two parts: K1 and K2. In
case of TDES3K, the 192 bit key is split into three parts: K1, K2 and K3.
The implementation of AES is based on FIPS PUB 197. The method always operates on
entire data blocks of 16 bytes, the key-length is 128 bit.

DES Encrypt

K1
Plain Block

DES Decrypt

K2

DES Encrypt

K1
Ciphered Block

DES Decrypt

K1

DES Encrypt

K2

DES Decrypt

K1
Plain BlockCiphered Block

Figure 22.1: TDES2K Operation

Page 162 of 196

22 Cryptographic Operations

DES Encrypt

K1
Plain Block

DES Decrypt

K2

DES Encrypt

K3
Ciphered Block

DES Decrypt

K3

DES Encrypt

K2

DES Decrypt

K1
Plain BlockCiphered Block

Figure 22.2: TDES3K Operation

The cryptographic API may be used to simply encrypt/decrypt a single block or to encryp-
t/decrypt a chain of blocks using the CBC-method (Ciphered Block Chaining).
In CBC mode, every ciphering operation depends on the foregoing step, this is achieved
by involving the so-called Init Vector IV. The first CBC-operation usually works with an Init
Vector that is set to zero.
For encryption, a plain data block P is logically XOR-ed with this Init Vector before it comes
to encryption. The result is a ciphered block C which serves as Init Vector for the next oper-
ation. See the schematic below for details:

Page 163 of 196

22 Cryptographic Operations

Encryption

IV

Encryption

P1 P2

C1 C2

Encryption

Pn

...

Cn

Figure 22.3: CBC Enciphering scheme

If a ciphered block C is decrypted, the result is logically XOR-ed with the Init Vector. See the
schematic below for details:

Page 164 of 196

22 Cryptographic Operations

Decryption

IV

Decryption

C1 C2

P1

Decryption

Cn

...

PnP2

Figure 22.4: CBC Deciphering scheme

22.1 Initialization

The cryptographic API has to be initialized before it can be used. During initialization the
key is passed to the cryptographic method and assigned to a cryptographic environment.
After initialization the functions for encryption and decryption are set up for the desired
cryptographic mode. If a cryptographic environment is configured for CBC-operation, the
internally managed Init Vector is automatically reset to zero.

void Crypto_Init
(
int CryptoEnv,
int CryptoMode,
const byte* Key,
int KeyByteCnt
);

Page 165 of 196

22 Cryptographic Operations

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants.

int CryptoMode Specify the mode of cryptographic operation. Choose either
one of the predefined non-CBC constants CRYPTOMODE_3DES,
CRYPTOMODE_3K3DES, CRYPTOMODE_AES128 or one of
the pre-defined CBC constants CRYPTOMODE_CBC_DES,
CRYPTOMODE_CBC_DFN_DES, CRYPTOMODE_CBC_3DES,
CRYPTOMODE_CBC_DFN_3DES, CRYPTOMODE_CBC_3K3DES,
CRYPTOMODE_CBC_AES128.

const byte* Key The key is passed by this parameter. Depending on the spec-
ified crypto mode, the key-length is either 16 or 24 bytes.

int KeyByteCnt Specify the length of the key in bytes.

Return: This function has no return value.

22.2 Encrypt

Use this function to encrypt a plain block of data.

void Encrypt
(
int CryptoEnv,
const byte* PlainBlock,
byte* CipheredBlock,
int BlockByteCnt
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants.

const byte* PlainBlock Pointer to the array, that contains the plain data block to be
encrypted.

byte* CipheredBlock Pointer to the array, that receives the encrypted data block.
Take care for proper dimensioning.

int BlockByteCnt Specify the number of bytes of a block.

Return: This function has no return value.

Page 166 of 196

22 Cryptographic Operations

22.3 Decrypt

Use this function to decrypt an encrypted block of data.

void Decrypt
(
int CryptoEnv,
const byte* CipheredBlock,
byte* PlainBlock,
int BlockByteCnt
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants.

const byte*
CipheredBlock

Pointer to the array, that holds the encrypted data block.

const byte* PlainBlock Pointer to the array, that receives the decrypted data block.
Take care for proper dimensioning.

int BlockByteCnt Specify the number of bytes of a block.

Return: This function has no return value.

22.4 Reset Init Vector

Use this function to manually reset the internally managed Init Vector of a cryptographic en-
vironment to zero.

void CBC_ResetInitVector
(
int CryptoEnv
);

Parameters:

int CryptoEnv Specify a cryptographic environment by this parameter. The
valid range is CRYPTO_ENV0 to CRYPTO_ENV3, use one of these
predefined constants.

Return: This function has no return value.

Page 167 of 196

23 Storage Functions

23 Storage Functions

This chapter describes functions for accessing the storage of TWN4.

The storage memory is part of the internal flash of the main control unit (MCU) of TWN4.
The gross amount of this storage is 48kByte. Due to segmentation of the memory and
further control mechanisms, after deduction the memory size is 18kByte.

Before first use of the storage, the storage must be formatted. The appropriate system
function for doing so is FSFormat.

In order to gain access to the storage memory, the file system must be initialized and con-
nected to the internal flash. This can be achieved with the system function FSMount.

Why is a separate mount needed to gain access to the storage memory?

The reason for a separate mount is, that there could be a reasonable amount of time re-
quired in order to start the file system. Background is, that depending on the state of the
file system, additional activities must be started, before access of the storage memory is
possible. There is especially the situation, which can occur, if last file operation were inter-
rupted by a unplanned power fail. This can lead to the situation, that the file system must be
reset to the state, before the interrupted file operation was started. This clean-up is done by
function FSMount

The structure of the storage memory is similar to a none-hierarchical file system. Following
points must be known:

• Data is structured in files.

• Files are indicated by a file ID. The file ID is any 32 bit number.

• It is possible to iterate through the existing files and thus list the files stored in the
memory.

• There is a maximum number of files, which can be stored in the memory. This maxi-
mum number is 16.

• In order to read from or write to files, appropriate system functions are available. In
order to start a file operation, the file must be opened for appropriate file operation.
The maximum number of files, which can be kept opened at a time is 4.

• File operations are kept atomic. This means: If a change to a file (some kind write
operation) is interrupted by a power fail, the file system returns to the state, where the
change began.

Page 168 of 196

23 Storage Functions

23.1 Management Functions

23.1.1 FSMount

Before any access to files can be performed, the appropriate file system must be mounted.
Following steps are performed by function FSMount:

• Check, if the specified volume contains a valid file system.

• Check, if there is a not completed file operation.

• If applicable, unwind file system to the point where not completed file operation was
started.

• Finally, create a logical link between volume and file system.

bool FSMount(int StorageID,int Mode)

Parameters:

int StorageID Specifies the volume, which should be mounted. Currently,
there is one storage available, the internal flash. The appro-
priate definition for this storage is SID_INTERNALFLASH

int Mode Specifies the mode in which the volume is mounted.
This can be FS_MOUNT_NONE (equivalent to a unmount),
FS_MOUNT_READONLY (no write access to storage possible)or
FS_MOUNT_READWRITE (full read/write access).

Return: If the operation was successful, the return value is true, oth-
erwise it is false. A concrete error code can be retrieved with
system function GetLastError.

23.1.2 FSFormat

This function prepares the storage memory of TWN4 for further file operations.

— WARNING — WARNING — WARNING —

All data, which is stored on the file system will be irrecoverable deleted by calling this func-
tion!

bool FSFormat(int StorageID,int MagicValue)

Page 169 of 196

23 Storage Functions

Parameters:

int StorageID Specifies the volume, which should be formatted.

int MagicValue In order to avoid accidantely format of a volume, an
appropriate parameter for MagicValue must be speci-
fied. There is a definition for this magic value, which is
FS_FORMATMAGICVALUE.

Return: If the operation was successful, the return value is true, oth-
erwise it is false. A concrete error code can be retrieved with
system function GetLastError.

23.2 File Functions

23.2.1 FSOpen

This function must be called in order to begin any read or write operation from/to a file.

Following definitions for the parameter mode are valid:

FS_READ Open a file for read access. If the file not exists, an error is
generated. The position of the read pointer is set to zero, thus
to the start of the file.

FS_WRITE Open a file for write access. An empty file is created inde-
pendently of if the file already exists or not, thus content of an
earlier version of that file will be deleted.

FS_APPEND Open a file for write access. If the file does not exist, a new file
is created. If the file already exists, the file pointer is moved
to the end of the file, which means, that newly written data is
appended to data of existing file.

Following further considerations:

• A file can be opened one time in mode FS_WRITE or FS_APPEND, but never, if it is
already opened by any other file operation.

• A file can be opened many times in mode FS_READ, but never, if it is already opened
in mode FS_WRITE or FS_APPEND by another file operation.

bool FSOpen(int FileEnv,int StorageID,uint32_t FileID,int Mode)

Page 170 of 196

23 Storage Functions

Parameters:

int FileEnv Specifies the environment to be used for the file operation.
Up to four file operations can be opened at a time. The ap-
propriate defintions for these environments are FILE_ENV0 -
FILE_ENV3.

int StorageID Specifies the storage on which the file resides. Currently, this
parameter can be SID_INTERNALFLASH only.

uint32_t FileID Specifies the ID of a file. The file ID is a reduced version of
file name and be understood as such. File ID is an integer
number from 1 to 232 − 1, thus 0x00000000 to 0xFFFFFFFF.

int Mode Specifies, how the file is accessed (see above).

Return: If the operation was successful, the return value is true, oth-
erwise it is false. A concrete error code can be retrieved with
system function GetLastError.

X

23.2.2 FSClose

This function is used to terminate a file operation. Several actions are taken, when this
function is called:

• Pending data is written to the storage system.

• If this is the last file being closed, the file system is finalized in terms, that the even
loss of the power will restore this now achieved state.

bool FSClose(int FileEnv)

Parameters:

int FileEnv Specifies the environment to be used for the file operation.

Return: If the operation was successful, the return value is true, oth-
erwise it is false. A concrete error code can be retrieved with
system function GetLastError.

23.2.3 FSCloseAll

This function is closing all opened file operations throughout all mounted storages. This
function avoids keeping track of opened file operations.

void FSCloseAll(void)

Page 171 of 196

23 Storage Functions

Parameters: None.

Return: None.

23.2.4 FSSeek

Read and write operations from/to a file are implemented via a file pointer, which references
the point, from which next data is read or where next data is written. With this function, the
file pointer can be moved throughout a file and furthermore in relation to a specific point of
the file.

FS_POSABS Move file position in relation to the start of the file. This results
in a move of the file pointer to an absolute position.

FS_POSREL Move the file pointer in relation to the current position. This
allows an easy skip of a number of bytes of the file.

FS_POSEND Move the file pointer in relation to the end of the file. This
allows to move to the end of the file without knowledge and
independent of the length of a file.

bool FSSeek(int FileEnv,int Origin,int Pos)

Parameters:

int FileEnv Specifies the environment to be used for the file operation.

int Origin Specifies the reference point, from which the new file position
is calculated (see above).

int Pos Specifies the number of bytes in relation to the reference
point. A negative value is treated as position before refer-
ence point, a positive value is treated as position behind the
reference point.

Return: If the operation was successful, the return value is true, oth-
erwise it is false. A concrete error code can be retrieved with
system function GetLastError.

23.2.5 FSTell

This function returns the position of the file pointer in relation to a reference point. Please
note that in consequence, specifying FS_POSREL as origin must always return the value
zero.

bool FSTell(int FileEnv,int Origin,int *Pos)

Page 172 of 196

23 Storage Functions

Parameters:

int FileEnv Specifies the environment to be used for the file operation.

int Origin Specifies the reference point, under which the current position
is calculated (see function FSSeek).

int *Pos A pointer to an integer, which will receive the value of the po-
sition.

Return: If the operation was successful, the return value is true, oth-
erwise it is false. A concrete error code can be retrieved with
system function GetLastError.

23.2.6 FSReadBytes

Read bytes from a file, which has been opened in mode FS_READ before. Use function
FSOpen to open the file accordingly.

The function generates the error ERR_ENDOFFILE, if less than the requested number of bytes
were read from the file or if there are no more bytes left to be read from the file.

bool FSReadBytes(int FileEnv,void *Data,int ByteCount,int *BytesRead)

Parameters:

int FileEnv Specifies the environment to be used for the file operation.

void *Data Pointer to an array of bytes, which receives read data.

int ByteCount Number of bytes, which should be read from the file.

int *BytesRead Pointer to an integer, which receives the number of actually
read bytes. The received value is valid even if the function
returns with an error.

Return: If the operation was successful, the return value is true, oth-
erwise it is false. A concrete error code can be retrieved with
system function GetLastError.

23.2.7 FSWriteBytes

Write bytes to a file, which has been opened in mode FS_WRITE or FS_APPEND before. Use
function FSOpen to open the file accordingly.

bool FSWriteBytes(int FileEnv,const void *Data,int ByteCount,int *BytesWritten)

Page 173 of 196

23 Storage Functions

Parameters:

int FileEnv Specifies the environment to be used for the file operation.

const void *Data Pointer to an array of bytes, which contains data to be written.

int ByteCount Number of bytes, which should be written to the file.

int *BytesWritten Pointer to an integer, which receives the number of actually
written bytes. The received value is valid even if the function
returns with an error.

Return: If the operation was successful, the return value is true, oth-
erwise it is false. A concrete error code can be retrieved with
system function GetLastError.

23.3 Directory Functions

23.3.1 FSFindFirst

The functions FSFindFirst/FSFindNext implement the possibility to enumerate the files
contained in a files system. In order to begin enumeration of files the function FSFindFirst
must be called.

The members of a directory entry are stored in a structure of type TFileInfot. The mem-
bers of the structure are:

ID The file ID.

Length The length of the file.

bool FSFindFirst(int StorageID,TFileInfo *pFileInfo)

Parameters:

int StorageID Storage ID of the file system, where files should be enumer-
ated.

TFileInfo *pFileInfo Pointer to a structure of type TFileInfo which receives a di-
rectory entry.

Return: If the operation was successful, the return value is true, oth-
erwise it is false. If no directory entry was found the error
code ERR_FILENOTFOUND is generated. The concrete error
code can be retrieved with system function GetLastError.

Page 174 of 196

23 Storage Functions

23.3.2 FSFindNext

The functions FSFindFirst/FSFindNext implement the possibility to enumerate the files
contained in a files system. In order to continue enumeration, once first entry has been
retrieved with function FSFindFirst, the function FSFindNext must be called.

bool FSFindNext(TFileInfo *pFileInfo)

Parameters:

TFileInfo *pFileInfo Pointer to a structure of type TFileInfo which receives a di-
rectory entry.

Return: If the operation was successful, the return value is true, oth-
erwise it is false. If no directory entry was found the error
code ERR_FILENOTFOUND is generated. The concrete error
code can be retrieved with system function GetLastError.

23.3.3 FSDelete

Use function FSDelete to delete files from the file system. A file, which is currently opened
can not be deleted.

bool FSDelete(int StorageID,uint32_t FileID)

Parameters:

int StorageID Storage ID of the file in question.

uint32_t FileID File ID of the file to be deleted.

Return: If the operation was successful, the return value is true, oth-
erwise it is false. A concrete error code can be retrieved with
system function GetLastError.

23.3.4 FSRename

Use function FSRename to rename files on the file system.

bool FSRename(int StorageID,uint32_t OldFileID,uint32_t NewFileID)

Page 175 of 196

23 Storage Functions

Parameters:

int StorageID Storage ID of the file in question.

uint32_t OldFileID Current file ID of the file to be renamed.

uint32_t NewFileID Future file ID of the file to be renamed.

Return: If the operation was successful, the return value is true, oth-
erwise it is false. A concrete error code can be retrieved with
system function GetLastError.

23.3.5 Examples

The following example shows a minimal App which is storing data (a structure with constant
size) in the file system.

Here is an example for a function, which reads a complete file from the file system. The file
system must have been mounted before with function FSMount.

bool ReadFile1(uint32_t FileID,byte *Data,int *FileLength,int MaxFileLength)
{

if (!FSOpen(FILE_ENV0,SID_INTERNALFLASH,FileID,FS_READ))
return false;

FSReadBytes(FILE_ENV0,Data,MaxFileLength,FileLength);
int LastError = GetLastError();
FSClose(FILE_ENV0);
if (LastError != ERR_NONE && LastError != ERR_ENDOFFILE)

return false;
// Function was successfully completed
return true;

}

Here is an example for a function, which reads a complete file from the file system but in
portions of 256 bytes. This might be useful, if the implementation is actually done on a host,
which is doing system calls indirectly via TWN4 Simple Protocol. The file system must have
been mounted before with function FSMount.

bool ReadFile2(uint32_t FileID,byte *Data,int *Length,int ExpectedLength)
{

*Length = 0;
if (!FSOpen(FILE_ENV0,SID_INTERNALFLASH,FileID,FS_READ))

return false;
bool ReadSuccess;
int RemainingBytes = ExpectedLength;
do
{

if (RemainingBytes == 0)
{

FSClose(FILE_ENV0);

Page 176 of 196

23 Storage Functions

return true;
}
const int BlockSize = 256;
int BytesToRead = RemainingBytes;
if (BytesToRead > BlockSize)

BytesToRead = BlockSize;
int BytesRead;
ReadSuccess = FSReadBytes(FILE_ENV0,Data,BytesToRead,&BytesRead);
Data += BytesRead;
*Length += BytesRead;
RemainingBytes -= BytesRead;

}
while (ReadSuccess);
int LastError = GetLastError();
FSClose(FILE_ENV0);
if (LastError != ERR_NONE && LastError != ERR_ENDOFFILE)

return false;
// Function was successfully completed
return true;

}

Here is an example for a function, which writes a complete file to the file system in portions
of 256 bytes. This might be useful, if the implementation is actually done on a host, which
is doing system calls indirectly via TWN4 Simple Protocol. The file system must have been
mounted before with function FSMount.

bool WriteFile(uint32_t FileID,byte *Data,int Length)
{

if (!FSOpen(FILE_ENV0,SID_INTERNALFLASH,FileID,FS_WRITE))
return false;

bool WriteSuccess;
int RemainingBytes = Length;
do
{

if (RemainingBytes == 0)
{

FSClose(FILE_ENV0);
return true;

}
const int BlockSize = 256;
int BytesToWrite = RemainingBytes;
if (BytesToWrite > BlockSize)

BytesToWrite = BlockSize;
int BytesWritten;
WriteSuccess = FSWriteBytes(FILE_ENV0,Data,BytesToWrite,&BytesWritten);
Data += BytesWritten;
RemainingBytes -= BytesWritten;

}
while (WriteSuccess);

Page 177 of 196

23 Storage Functions

int LastError = GetLastError();
FSClose(FILE_ENV0);
if (LastError != ERR_NONE)

return false;
// Function was successfully completed
return true;

}

Page 178 of 196

24 System Parameters

24 System Parameters

The TWN4 App-system provides methods of setting up paramaters before or during runtime
of Apps.

• In order to set up parameters before the App is started, a so-called Manifest can be
specified as part of an App.

• In order to set up parameters during normal execution of an App there is the system
function SetParameters.

This section describes the specification of a Manifest and all available parameters. See
chapter "System Functions" for a description of function SetParameters.

24.1 TLV Format

Parameters for a Manifest or the system function SetParameters are specified in the TLV
format. The TLV format specifies a chain of parameters with variable type and length. This
format must follow following rules:

• Every entry (except the last entry) is a sequence of 3 items. The 3 items are ’Type’,
’Length’ and ’Value’.

• The name of the parameter is associated to ’Type’, the length of

• the value is associated to ’Length’ and the value itself is associated to ’Value’

• The TLV list must be terminated with an item consisting of just the type. This type
must contain the value TLV_END.

24.2 Manifest

The intention for specifying a Manifest as part of an App could be to avoid opening of com-
munication channels in order to further reduce current consumption. Another could be to
modify behaviour of the USB section of TWN4.

The specification of a Manifest is pretty simple:

Page 179 of 196

24 System Parameters

Define an array of bytes with the key-name Manifest. This will point the firmware of TWN4
to the position where the parameters of interest are stored. Here is an example:

Example:

// This sample demonstrates the specification of a Manifest:
const byte *Manifest =
{

OPEN_PORTS, 1, OPEN_PORT_USB_MSK, // Open USB channel only
TLV_END // End of TLV

};

No further action is required.

Page 180 of 196

24 System Parameters

24.3 Available Parameters

Here is a list of all parameters, which are supported:

Type (Parameter) Length Value

TLV_END N/A N/A

OPEN_PORTS 1 Bitwise OR of one or more of the following definitions:

OPEN_PORT_USB_MSK

OPEN_PORT_COM1_MSK

OPEN_PORT_COM2_MSK

EXECUTE_APP 1 EXECUTE_APP_AUTO

EXECUTE_APP_ALWAYS

INDITAG_READMODE 1 INDITAG_READMODE_1

INDITAG_READMODE_2

COTAG_READMODE 1 COTAG_READMODE_HASH

COTAG_READMODE_1

COTAG_READMODE_2

COTAG_VERIFY 1 COTAG_VERIFY_OFF

COTAG_VERIFY_ON

HONEYTAG_READMODE 1 HONEYTAG_READMODE_HASH

HONEYTAG_READMODE_1

ICLASS_READMODE 1 ICLASS_READMODE_UID

ICLASS_READMODE_PAC

AT55_BITRATE 1 8 to 128 as multiple of 2

AT55_OPTIONS 1 Bitwise OR of one or more of the following definitions:

AT55_OPT_SEQUENCETERMINATOR_ON

AT55_OPT_SEQUENCETERMINATOR_OFF

Page 181 of 196

24 System Parameters

Continued from last page:

HITAG1S_T0 1 Values from 14 to 40

HITAG1S_T1 1 Values from 14 to 40

HITAG1S_TGAP 1 Values from 2 to 14

HITAG2_T0 1 Values from 14 to 40

HITAG2_T1 1 Values from 14 to 40

HITAG2_TGAP 1 Values from 2 to 14

ISO14443_BITRATE_TX 1 One of the following possible bitrates:

ISO14443_BITRATE_106

ISO14443_BITRATE_212

ISO14443_BITRATE_424

ISO14443_BITRATE_848

ISO14443_BITRATE_RX 1 One of the following possible bitrates:

ISO14443_BITRATE_106

ISO14443_BITRATE_212

ISO14443_BITRATE_424

ISO14443_BITRATE_848

Page 182 of 196

25 System Errors

25 System Errors

Here is a list of all error codes, which are generated by the firmware of TWN4. The error
codes can be retrieved with function GetLastError.

In the current version of the firmware, storage functions (FS...) are generating such er-
rors.

Error Code Description

ERR_NONE No error occured.

ERR_OUTOFMEMORY The excution of a function required more memory than was
available.

ERR_ISALREADYINIT There was a try to initialize a system module, which already
was initialized.

ERR_NOTINIT There was a try to use a function from a module, which is not
initialized.

ERR_ISALREADYOPEN There was a try to open a system resource, which is already is
open.

ERR_NOTOPEN There was a try to use a system resource, which must be
opened before usage.

ERR_RANGE A specified parameters exceeded the valid range of values.

ERR_PARAMETER A specified parameters is not in set of valid parameters.

ERR_UNKNOWNSTORAGEID A storage ID was specified, which is not known by the firmware.

ERR_WRONGINDEX A index was specified, which was out of the valid range.

ERR_FLASHERASE The erase of a section of the flash failed.

ERR_FLASHWRITE The write to the flash memory failed.

ERR_SECTORNOTFOUND A sector of the file system was not found.

ERR_STORAGEFULL All sectors of the file system are occupied.

ERR_STORAGEINVALID There is an error in the file system.

Page 183 of 196

25 System Errors

ERR_TRANSACTIONLIMIT The limit of changes in the file system is reached, which
is possible within one transactions.

ERR_UNKNOWNFS The file system on the specified storage is not supported
by the current firmware.

ERR_FILENOTFOUND The specified file was not found.

ERR_FILEALREADYEXISTS The specified file already exists.

ERR_ENDOFFILE The end of the file was reached. There is no more data
to be read. Note: This error code is generated even the
system function returned successful execution.

ERR_STORAGENOTFOUND The specified storage was not found, e.g. because it is
not mounted.

ERR_STORAGEALREADYMOUNTED The specified storage is already mounted.

ERR_ACCESSDENIED The access to a file was denied, e.g. write access to a file
in a storage, which is mounted as read only.

ERR_FILECORRUPT The specified file is corrupt in terms of a corrupted file
system.

ERR_INVALIDFILEENV The specified environment is invalid.

ERR_INVALIDFILEID The specified file ID is invalid.

ERR_RESOURCELIMIT The maximum number of available resources have bee
occupied.

Please see file twn4.sys.h (which can be found in local directory Tools\sys\ of the devel-
oper pack) for concrete numbers, which are behind the definitions.

Page 184 of 196

26 Runtime Library

26 Runtime Library

There is a couple of functions, which are not part of the firmware of TWN4. Instead, they
are statically linked to the App.

There are several intentions for such functions:

• Provide functions instead of having similar code in each App.

• Provide an API at a higher level to simplify writing Apps.

• Maintain a degree of compatibility to TWN3.

26.1 Timer Functions

Include file: apptools.h

There are three functions, which implement a simple API, which allows triggering events
after a specified time. The behaviour of the functions are similar to TWN3. Compared to
TWN3, there is only one timer available. Therefore no timer ID must be specified. These
timer functions are implemented using system function GetSysTicks.

26.1.1 StartTimer

Start the timer with a specified time.

void StartTimer(unsigned long Duration)

Parameters:

unsigned long Duration Time in milliseconds, till function TestTimer returns true.

Return: None.

26.1.2 StopTimer

Stop the timer, thus function TestTimer will never return true.

void StopTimer(void);

Page 185 of 196

26 Runtime Library

Parameters: None.

Return: None.

26.1.3 TestTimer

Test, if the timer reached the timeout which was programmed by function StartTimer.

bool TestTimer(void);

Parameters: None.

Return: If the timeout has been reached, the function returns true,
otherwise, it return false.

26.2 Host Communication

Include file: apptools.h

There are several function which implement a simplified interface for direct write to the host.
The host is defined to be a communication channel, where all communication takes place.
This removes the requirement to specify the communication channel every time when com-
munication should take place.

For a more sophisticated kind of communication (binary, bidirectional), it is suggested to
directly use the I/O functions from the firmware.

26.2.1 SetHostChannel

Specify the channel, where communication should take place. By default, the channel is
determined by the connected communication cable, which is therefore either USB (TWN4
USB) or COM1 (TWN4 RS232).

void SetHostChannel(int Channel)

Parameters:

int Channel Specifies the communication channel to be used. This
might be CHANNEL_USB, CHANNEL_COM1, CHANNEL_COM2 or
CHANNEL_I2C or CHANNEL_NONE. If CHANNEL_NONE is speci-
fied, channel will be choosen depending on connected com-
munication cable.

Return: None.

Page 186 of 196

26 Runtime Library

26.2.2 HostTestByte

Use this function to check if there is a byte available in the input buffer of the host-channel.

bool HostTestByte(void)

Parameters: None.

Return: If there is a byte available, the return value is true, otherwise
it is false.

26.2.3 HostReadByte

Use this function to read a byte from the input buffer of the host-channel. If there is no byte
available, the function blocks until there is one.

byte HostReadByte(void)

Parameters: None.

Return: The byte which was read from the input buffer.

26.2.4 HostTestChar

Test if a character is available from the host. The character can be read with function
HostReadChar.

bool HostTestChar(void)

Parameters: None.

Return: true if at least one character arrived, otherwise false.

26.2.5 HostReadChar

Receive a character from the host. This is a blocking function. This means, it is waiting, till
a character is available.

char HostReadChar(void)

Parameters: None.

Return: The character, which was read from the host.

Page 187 of 196

26 Runtime Library

26.2.6 HostWriteByte

Use this function to send one byte to the host through the actually configured host-channel.
If the output buffer is completely occupied, the function blocks until there is enough space.

void HostWriteByte(byte Byte)

Parameters:

byte Byte The byte to be sent.

Return: None.

26.2.7 HostWriteChar

Send a character to the host. This is a blocking function. This means, it is waiting, till there
is storage in the output buffer, to transmit the character.

void HostWriteChar(char Char)

Parameters:

char Char The character to be sent to the host.

Return: None.

26.2.8 HostWriteString

Send a string to the host. The string must be terminated with a null character. The string is
sent without the null character.

void HostWriteString(const char *String)

Parameters:

const char *String Pointer to the string to be sent.

Return: None.

26.2.9 HostWriteRadix

Send a number to the host in ASCII format. The number is specified by an array of bytes
containing the binary data.

void HostWriteRadix(const byte *ID,int BitCnt,int DigitCnt,int Radix)

Page 188 of 196

26 Runtime Library

Parameters:

const byte *ID Pointer to the array of bytes.

int BitCnt Number of bits stored in the array.

int DigitCnt Number of output digits.

int Radix Base for conversion from binary to ASCII. Use:
• 2 for binary conversion
• 8 for octal conversion
• 10 for decimal conversion
• 16 for hexadecimal conversion

Return: None.

26.2.10 HostWriteBin

Send a binary number to the host in ASCII format. The number is specified by an array of
bytes containing the binary data.

void HostWriteBin(const byte *ID,int BitCnt,int DigitCnt)

Parameters:

const byte *ID Pointer to the array of bytes.

int BitCnt Number of bits stored in the array.

DigitCnt Number of output digits.

Return: None.

26.2.11 HostWriteDec

Send a decimal number to the host in ASCII format. The number is specified by an array of
bytes containing the binary data.

void HostWriteDec(const byte *ID,int BitCnt,int DigitCnt)

Parameters:

const byte *ID Pointer to the array of bytes.

int BitCnt Number of bits stored in the array.

DigitCnt Number of output digits.

Return: None.

Page 189 of 196

26 Runtime Library

26.2.12 HostWriteHex

Send a hexadecimal number to the host in ASCII format. The number is specified by an
array of bytes containing the binary data.

void HostWriteHex(const byte *ID,int BitCnt,int DigitCnt)

Parameters:

const byte *ID Pointer to the array of bytes.

int BitCnt Number of bits stored in the array.

DigitCnt Number of output digits.

Return: None.

26.2.13 HostWriteVersion

Send the firmware version to the host. This function is sending the result of function GetVersionString
to the host.

void HostWriteVersion(void)

Parameters: None.

Return: None.

26.3 Beep Functions

Include file: apptools.h

The beep functions implement a simplified API around the system function Beep.

26.3.1 SetVolume

Set the beeper volume. The default volume is 0.

void SetVolume(int NewVolume)

Parameters:

int NewVolume Specify the volume in percent from 0 to 100.

Return: None.

Page 190 of 196

26 Runtime Library

26.3.2 GetVolume

Read current volume.

int GetVolume(void);

Parameters: None.

Return: Current volume in arange from 0 to 100.

26.3.3 BeepLow

Perform a beep at a frequency of BEEP_FREQUENCY_LOW (2057 Hz) with a duration of 50 milliseconds.

void BeepLow(void)

Parameters: None.

Return: None.

26.3.4 BeepHigh

Perform a beep at a frequency of BEEP_FREQUENCY_HIGH (2400 Hz) with a duration of 50 milliseconds.
This is meant to be the standard signal for a successful operation, e.g. read of a transpon-
der.

void BeepHigh(void)

Parameters: None.

Return: None.

26.4 Compatibility to TWN3

Include file: apptools.h

Currently, there is one function for maintaining 100% backward compatibility to TWN3 appli-
cations.

26.4.1 ConvertTagTypeToTWN3

This functions converts a tag type from the TWN4 system to TWN3 system. Due to the
fact that TWN4 covers a broader range of transponders, the situation might occure, that a

Page 191 of 196

26 Runtime Library

conversion is not possible. Under that circumstance the TWN3 value TAGTYPE_NONE (0) is
returned.

int ConvertTagTypeToTWN3(int TagTypeTWN4)

Parameters:

int TagTypeTWN4 Tag type as returned e.g. by TWN4 system function
SearchTag.

Return: Corresponding tag type as it would be returned by TWN3 sys-
tem function TagSearch.

26.5 Simple Protocol

Include file: prs.h

The Simple Protocol is the standard protocol for building solutions, which need operation of
TWN4, which is controlled by the host.

There is a set of functions and definitions, which allow to implement an App, which runs
the Simple Protocol. There are some options, which have influence on some details of the
Simple Protocol (ASCII/binary mode, CRC). Furthermore, these functions allow to specify
custom communication channel and configure the host interface before starting the commu-
nication.

The simplest App for using these functions could be written as follows:

#include <twn4.sys.h>
#include <prs.h>

int main(void)
{

InitSimpleProtocol(GetHostChannel(),PRS_COMM_MODE_ASCII | PRS_COMM_CRC_OFF);
while (true)
{

if (SimpleProtoTestCommand())
{

SimpleProtoExecuteCommand();
SimpleProtoSendResponse();

}
}

}

Page 192 of 196

26 Runtime Library

26.5.1 SimpleProtoInit

Use this function to prepare the Simple Protocol for operation. Before starting this function,
it is possible to e.g. prepare a serial port with appropriate communication parameters.

bool SimpleProtoInit(int Channel,int Mode)

Parameters:

int Channel This parameter specifies the communication channel for the
Simple Protocol. This can be one the channels as defined by
the system I/O functions.

int Mode This parameter specified the mode of communication. It is a
or-operation, which combines mode (PRS_COMM_MODE_ASCII
or PRS_COMM_MODE_BINARY and CRC (COMM_CRC_OFF or
PRS_COMM_CRC_ON).

Return: This functions return true, if initialization was successful.
Otherwise it returns false.

26.5.2 SimpleProtoTestCommand

This is a none-blocking function, which polls for the availabilty of a command from the host.
If the function returns true, a command is available. The command is stored in the global
variables SimpleProtoMessage and SimpleProtoMessageLength.

bool SimpleProtoTestCommand(void)

Parameters: None.

Return: This functions return true, if a command became available.
Otherwise it returns false.

26.5.3 SimpleProtoExecuteCommand

This function executes a command stored in the global variables SimpleProtoMessage and
SimpleProtoMessageLength. After execution of the command, these variables contain the
response to be sent to the host.

void SimpleProtoExecuteCommand(void)

Parameters: None.

Return: None.

Page 193 of 196

26 Runtime Library

26.5.4 SimpleProtoSendResponse

This function sends a response stored in the global variables SimpleProtoMessage and
SimpleProtoMessageLength to the host.

void SimpleProtoSendResponse(void)

Parameters: None.

Return: None.

Page 194 of 196

27 Compatibility of TWN4 Mini Reader MIFARE NFC

27 Compatibility of TWN4 Mini Reader
MIFARE NFC

Due to reduced functionality of TWN4 Mini Reader MIFARE NFC, several API functions are
not available. If an API function is called, which is not supported by TWN4 Mini Reader
MIFARE NFC the device stops execution of the App and enters exception state (diagnostic
LED is flashing three times).

Page 195 of 196

27 Compatibility of TWN4 Mini Reader MIFARE NFC

API Supported Remark

System Functions Yes

I/O Functions Yes COM2 and USB are not supported

Memory Functions Yes

Peripheral Functions Yes Support of GPIO0 to GPIO3 only, Beep
is doing delay only

Conversion Functions Yes

I2C Functions No

RF Functions Yes

HITAG 1 and HITAG S Functions No

HITAG 2 Functions No

EM4x50 Functions No

AT55xx Functions No

TILF (TIRIS) Functions No

LEGIC Functions No

MIFARE Classic Functions Yes

MIFARE Ultralight (-C) Functions Yes

ISO15693 Functions Yes

Cryptographic Functions Yes

DESFire Functions Yes

Contact Card Functions Yes SAM1 only

iCLASS Functions Yes

ISO14443 Functions Yes

NFC SNEP Functions Yes

System Parameters Yes

Runtime Library Yes

Page 196 of 196

	1 System Functions
	1.1 SysCall
	1.2 Reset
	1.3 StartBootloader
	1.4 GetSysTicks
	1.5 GetVersionString
	1.6 GetUSBType
	1.7 GetDeviceType
	1.8 Sleep
	1.9 GetDeviceUID
	1.10 SetParameters
	1.11 GetLastError

	2 I/O Functions
	2.1 Configuration
	2.1.1 Set COM-Port Parameters
	2.1.2 Get USB Device State
	2.1.3 Get Host Channel

	2.2 Data I/O
	2.2.1 Query I/O Buffer Size
	2.2.2 Get I/O Buffer Byte Count
	2.2.3 Test Empty
	2.2.4 Test Full
	2.2.5 Send Byte
	2.2.6 Read Byte

	3 Memory Functions
	3.1 Byte Operations
	3.1.1 Compare Bytes
	3.1.2 Copy Bytes
	3.1.3 Fill Bytes
	3.1.4 Swap Bytes

	3.2 Bit Operations
	3.2.1 Read Bit
	3.2.2 Write Bit
	3.2.3 Copy Bit
	3.2.4 Compare Bits
	3.2.5 Copy Bits
	3.2.6 Fill Bits
	3.2.7 Swap Bits
	3.2.8 Count Bits

	4 Peripheral Functions
	4.1 General Purpose Inputs/Outputs (GPIOs)
	4.1.1 Configuration
	4.1.1.1 Outputs
	4.1.1.2 Inputs

	4.1.2 Basic Port Functions
	4.1.2.1 Set GPIOs to Logical Level
	4.1.2.2 Toggle GPIOs
	4.1.2.3 Waveform Generation
	4.1.2.4 Read GPIOs

	4.1.3 Higher Level Port Functions
	4.1.3.1 Send Data in Wiegand Format
	4.1.3.2 Send Data in Omron Format

	4.2 Beeper
	4.3 LEDs
	4.3.1 General Purpose LED Functions
	4.3.1.1 Initialization
	4.3.1.2 Set LEDs On/Off
	4.3.1.3 Toggle LEDs
	4.3.1.4 Blink LEDs
	4.3.1.5 Get LED State

	4.3.2 Diagnostic LED
	4.3.2.1 Set Diagnostic LED On/Off
	4.3.2.2 Toggle Diagnostic LED
	4.3.2.3 Get LED State

	5 Conversion Functions
	5.1 Hexadecimal ASCII to Binary
	5.1.1 Scan Hexadecimal Character
	5.1.2 Scan Hexadecimal String

	5.2 Binary to Hexadecimal ASCII

	6 I2C Functions
	6.1 Initialization/Deinitialization
	6.1.1 I2CInit
	6.1.2 I2CDeInit
	6.1.3 Examples

	6.2 Communication (Master)
	6.2.1 I2CMasterStart
	6.2.2 I2CMasterStop
	6.2.3 I2CMasterTransmitByte
	6.2.4 I2CMasterReceiveByte
	6.2.5 I2CMasterBeginWrite
	6.2.6 I2CMasterBeginRead
	6.2.7 I2CMasterSetAck
	6.2.8 Examples

	6.3 Communication (Slave)
	6.3.1 Slave to Master
	6.3.2 Master to Slave
	6.3.3 Examples

	7 RF Functions
	7.1 SearchTag
	7.2 SetRFOff
	7.3 SetTagTypes
	7.3.1 Supported Types of LF Tags (125kHz-134.2kHz)
	7.3.2 Supported Types of HF Tags (13.56MHz)

	7.4 GetTagTypes
	7.5 GetSupportedTagTypes

	8 HITAG1- and HITAGS-Specific Transponder Operations
	8.1 Read/Write Data
	8.1.1 Hitag1S_ReadPage
	8.1.2 Hitag1S_WritePage
	8.1.3 Hitag1S_ReadBlock
	8.1.4 Hitag1S_WriteBlock

	8.2 Hitag1S_Halt

	9 HITAG2-Specific Transponder Operations
	9.1 Read/Write Data
	9.1.1 Hitag2_ReadPage
	9.1.2 Hitag2_WritePage
	9.1.3 Hitag2_SetPassword

	9.2 Hitag2_Halt

	10 EM4x50-Specific Transponder Operations
	10.1 Functions
	10.1.1 EM4150_Login
	10.1.2 EM4150_ReadWord
	10.1.3 EM4150_WriteWord
	10.1.4 EM4150_WritePassword

	11 AT55xx-Specific Transponder Operations
	11.1 Control Functions
	11.1.1 AT55_Begin

	11.2 Read Data
	11.2.1 AT55_ReadBlock
	11.2.2 AT55_ReadBlockProtected

	11.3 Write Data
	11.3.1 AT55_WriteBlock
	11.3.2 AT55_WriteBlockProtected
	11.3.3 AT55_WriteBlockAndLock
	11.3.4 AT55_WriteBlockProtectedAndLock

	12 TILF (TIRIS) Functions
	12.1 Search Function
	12.1.1 TILF_SearchTag

	12.2 Single-Page Read/Write Function
	12.2.1 TILF_ChargeOnlyRead
	12.2.2 TILF_ChargeOnlyReadLo
	12.2.3 TILF_SPProgramPage
	12.2.4 TILF_SPProgramPageLo

	12.3 Multi-Page Read/Write Function
	12.3.1 TILF_MPGeneralReadPage
	12.3.2 TILF_MPSelectiveReadPage
	12.3.3 TILF_MPProgramPage
	12.3.4 TILF_MPSelectiveProgramPage
	12.3.5 TILF_MPLockPage
	12.3.6 TILF_MPSelectiveLockPage
	12.3.7 TILF_MPGeneralReadPageLo
	12.3.8 TILF_MPSelectiveReadPageLo
	12.3.9 TILF_MPProgramPageLo
	12.3.10 TILF_MPSelectiveProgramPageLo
	12.3.11 TILF_MPLockPageLo
	12.3.12 TILF_MPSelectiveLockPageLo

	12.4 Multi-Usage Read/Write Function
	12.4.1 TILF_MUGeneralReadPage
	12.4.2 TILF_MUSelectiveReadPage
	12.4.3 TILF_MUSpecialReadPage
	12.4.4 TILF_MUProgramPage
	12.4.5 TILF_MUSelectiveProgramPage
	12.4.6 TILF_MUSpecialProgramPage
	12.4.7 TILF_MULockPage
	12.4.8 TILF_MUSelectiveLockPage
	12.4.9 TILF_MUSpecialLockPage

	13 ISO14443 Transponder Operations
	13.1 ISO14443A
	13.1.1 Get ATQA
	13.1.2 Get SAK
	13.1.3 Get ATS

	13.2 ISO14443B
	13.2.1 Get ATQB
	13.2.2 Get Answer to ATTRIB

	13.3 Check Presence
	13.4 ISO14443-4 Transparent Data Exchange

	14 MIFARE Classic Specific Transponder Operations
	14.1 Login
	14.2 Read/Write Data
	14.2.1 Read Data Block
	14.2.2 Write Data Block

	14.3 Handling of Value Blocks
	14.3.1 Read Value Block
	14.3.2 Write Value Block
	14.3.3 Increment Value Block
	14.3.4 Decrement Value Block

	15 MIFARE Ultralight/Ultralight C Specific Transponder Operations
	15.1 Login (Ultralight C only)
	15.2 Read/Write Data
	15.2.1 Read Page
	15.2.2 Write Page

	16 DESFire Specific Transponder Operations
	16.1 Security Related Operations
	16.1.1 Authenticate
	16.1.2 Get Key Version
	16.1.3 Get Key Settings
	16.1.4 Change Key Settings
	16.1.5 Change Key

	16.2 Transponder Related Operations
	16.2.1 Create Application
	16.2.2 Delete Application
	16.2.3 Get Application IDs
	16.2.4 Select Application
	16.2.5 Format Transponder
	16.2.6 Get Transponder Information
	16.2.7 Get Available Memory Space
	16.2.8 Get Card UID
	16.2.9 Set Transponder Configuration
	16.2.9.1 Disable Format Tag
	16.2.9.2 Enable Random ID
	16.2.9.3 Set Default Key
	16.2.9.4 Set User-defined Answer To Select (ATS)

	16.3 Application Related Operations
	16.3.1 Create File
	16.3.2 Delete File
	16.3.3 Get File IDs
	16.3.4 Get File Settings
	16.3.5 Change File Settings

	16.4 File Related Operations
	16.4.1 Data Files
	16.4.1.1 Read Data
	16.4.1.2 Write Data

	16.4.2 Value Files
	16.4.2.1 Get Value
	16.4.2.2 Debit
	16.4.2.3 Credit
	16.4.2.4 Limited Credit

	16.4.3 Commit Transaction
	16.4.4 Abort Transaction

	17 ISO15693 Specific Transponder Operations
	17.1 Generic ISO15693 Command
	17.2 Gather Tag Specific Information
	17.2.1 Get System Information
	17.2.2 Get Tag Type
	17.2.2.1 Get Tag Type From UID
	17.2.2.2 Get Tag Type From System Information

	17.3 Read/Write Data
	17.3.1 Read Single Block
	17.3.2 Write Single Block

	18 LEGIC-Specific Functions
	18.1 Direct Access of LEGIC Chip
	18.1.1 SM4X00_GenericRaw
	18.1.2 SM4X00_Generic
	18.1.3 SM4X00_StartBootloader
	18.1.4 SM4X00_EraseFlash
	18.1.5 SM4X00_ProgramBlock

	19 iCLASS Specific Transponder Operations
	19.1 Read PAC Bits
	19.2 Example

	20 Simple NDEF Exchange Protocol (SNEP)
	20.1 Initialize SNEP Service
	20.2 Get Connection State
	20.3 Query Message FIFO
	20.4 Transmit NDEF Message
	20.4.1 Begin Message
	20.4.2 Send Message Fragment
	20.4.3 Example

	20.5 Receive NDEF Message
	20.5.1 Test Message
	20.5.2 Receive Message Fragment
	20.5.3 Example

	21 Contact Card Operations
	21.1 Query Card Slot Status
	21.2 Card Activation
	21.3 Card Deactivation
	21.4 Set Communication Settings
	21.5 Transparent Data Transmission
	21.6 Exchange Of APDUs
	21.7 Examples
	21.7.1 PPS Example
	21.7.2 Communication Example

	22 Cryptographic Operations
	22.1 Initialization
	22.2 Encrypt
	22.3 Decrypt
	22.4 Reset Init Vector

	23 Storage Functions
	23.1 Management Functions
	23.1.1 FSMount
	23.1.2 FSFormat

	23.2 File Functions
	23.2.1 FSOpen
	23.2.2 FSClose
	23.2.3 FSCloseAll
	23.2.4 FSSeek
	23.2.5 FSTell
	23.2.6 FSReadBytes
	23.2.7 FSWriteBytes

	23.3 Directory Functions
	23.3.1 FSFindFirst
	23.3.2 FSFindNext
	23.3.3 FSDelete
	23.3.4 FSRename
	23.3.5 Examples

	24 System Parameters
	24.1 TLV Format
	24.2 Manifest
	24.3 Available Parameters

	25 System Errors
	26 Runtime Library
	26.1 Timer Functions
	26.1.1 StartTimer
	26.1.2 StopTimer
	26.1.3 TestTimer

	26.2 Host Communication
	26.2.1 SetHostChannel
	26.2.2 HostTestByte
	26.2.3 HostReadByte
	26.2.4 HostTestChar
	26.2.5 HostReadChar
	26.2.6 HostWriteByte
	26.2.7 HostWriteChar
	26.2.8 HostWriteString
	26.2.9 HostWriteRadix
	26.2.10 HostWriteBin
	26.2.11 HostWriteDec
	26.2.12 HostWriteHex
	26.2.13 HostWriteVersion

	26.3 Beep Functions
	26.3.1 SetVolume
	26.3.2 GetVolume
	26.3.3 BeepLow
	26.3.4 BeepHigh

	26.4 Compatibility to TWN3
	26.4.1 ConvertTagTypeToTWN3

	26.5 Simple Protocol
	26.5.1 SimpleProtoInit
	26.5.2 SimpleProtoTestCommand
	26.5.3 SimpleProtoExecuteCommand
	26.5.4 SimpleProtoSendResponse

	27 Compatibility of TWN4 Mini Reader MIFARE NFC

